ÌâÄ¿ÄÚÈÝ
14£®£¨1£©Èô¡ÏF1AB=90¡ã£¬ÇóÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÈôÍÖÔ²µÄ½¹¾àΪ2£¬ÇÒ$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}B}$£¬ÇóÍÖÔ²µÄ·½³Ì£®
·ÖÎö £¨1£©ÓÉ¡÷AOF2ΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬Ôòb=c£¬ÀûÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ÇóµÃÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÓÉ$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}B}$£¬¸ù¾ÝÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËË㣬ÇóµÃBµã×ø±ê£¬´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£®
½â´ð ½â£º£¨1£©Èô¡ÏF1AB=90¡ã£¬Ôò¡÷AOF2ΪµÈÑüÖ±½ÇÈý½ÇÐΣ®Ôò|OA|=|OF2|£¬¼´b=c£®
¡àa=$\sqrt{{b}^{2}+{c}^{2}}$=$\sqrt{2}$c£¬
ÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£»
£¨2£©ÓÉÌâÖª2c=2£¬c=1£¬ÔòA£¨0£¬b£©£¬F2£¨1£¬0£©£¬ÉèB£¨x£¬y£©£¬
ÓÉ$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}B}$£¬¼´£¨1£¬-b£©=2£¨x-1£¬y£©£¬
¡à$\left\{\begin{array}{l}{2x-2=1}\\{2y=-b}\end{array}\right.$£¬½âµÃx=$\frac{3}{2}$£¬y=-$\frac{b}{2}$£®
´úÈëÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¬¼´$\frac{9}{4{a}^{2}}+\frac{1}{4}=1$½âµÃa2=3£®b2=a2-c2=2£¬
¡àÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥ÐÔÖÊ£¬¿¼²éÏòÁ¿µÄ×ø±êÔËË㣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | 0 | B£® | $\frac{1}{2}$ | C£® | 1 | D£® | $\frac{5}{2}$ |
| A£® | $\frac{1}{2}$ | B£® | $\frac{\sqrt{2}}{2}$ | C£® | $\sqrt{3}-1$ | D£® | $\frac{\sqrt{3}}{2}$ |