题目内容

设变量x,y满足
x-2y+2≥0
x+y-2≥0
x≤3
,则z=2x-y的最大值为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数z的几何意义,进行平移,结合图象得到z=2x-y的最大值.
解答: 解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=2x-y得y=2x-z,
平移直线y=2x-z,
由图象可知当直线y=2x-z经过点C时,直线y=2x-z的截距最小,
此时z最大.
x=3
x+y-2=0
,解得
x=3
y=-1
,即C(3,-1)
将C(3,-1)的坐标代入目标函数z=2×3-(-1)=6+1=7,
即z=2x-y的最大值为7.
故答案为:7
点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网