题目内容
13.已知集合A={1,2,3},B={y|y=x-2,x∈A},则A∩B=( )| A. | {1} | B. | {4} | C. | {1,3} | D. | {1,4} |
分析 先分别求出集合A和B,由此利用交集定义能求出A∩B.
解答 解:∵集合A={1,2,3},
B={y|y=x-2,x∈A}={-1,0,1},
∴A∩B={1}.
故选:A.
点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.
练习册系列答案
相关题目
4.已知A,B是单位圆O上的两点(O为圆心),∠AOB=120°,点C是线段AB上不与A,B重合的动点.MN是圆O的一条直径,则$\overrightarrow{CM}$•$\overrightarrow{CN}$的取值范围是( )
| A. | [-$\frac{3}{4}$,0) | B. | [-$\frac{3}{4}$,0] | C. | [-$\frac{1}{2}$,1) | D. | [-$\frac{1}{2}$,1] |
8.将圆周20等份,按照逆时针方向依次编号为1、2、…20,若从某一点开始,沿圆周逆时针方向行走,点的编号是数字几,就走几段弧长,称这种走法为一次“移位”,如:小明在编号为1的点,他应走1段弧长,即从1→2为第一次“移位”,这时他到达编号为2的点,然后从2→3→4为第二次“移位”,若某人从编号为3的点开始,沿逆时针方向,按上述“移位”方法行走,“移位”a次刚好到达编号为16的点,又满足|a-2016|的值最小,则a的值为( )
| A. | 2015 | B. | 2016 | C. | 2017 | D. | 2018 |
3.已知O为△ABC内一点,且$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{OB}+\overrightarrow{OC})$,$\overrightarrow{AD}=t\overrightarrow{AC}$,若B,O,D三点共线,则t的值为( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |