题目内容
12.(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆上点A(2,1)作椭圆的弦AP,AQ,若AP,AQ的中点分别为M,N,若MN平行于l,则OM,ON斜率之和是否为定值?
分析 (Ⅰ)由离心率可得 a2=2b2,椭圆C与直线l相切,由$\left\{\begin{array}{l}y=x+3\\ \frac{x^2}{{2{b^2}}}+\frac{y^2}{b^2}=1\end{array}\right.$,得3x2+12x+18-2b2=0,△=144-4×3(18-2b2)=0,得b2=3,a2=6,可得椭圆方程
(Ⅱ)设点P(x1,y1),Q(x2,y2),可知PQ∥MN,所以kPQ=kMN=1,
设直线PQ的方程为y=x+t,代入椭圆方程并化简得:3x2+4tx+2t2-6=0
由题意可知$\left\{\begin{array}{l}{x_1}+{x_2}=-\frac{4t}{3}\\{x_1}{x_2}=\frac{{2{t^2}-6}}{3}\end{array}\right.$,利用韦达定理可计算${k_{OM}}+{k_{ON}}=\frac{{2(2{t^2}-6)+(t+3)(-4t)+12t+12}}{{3{x_1}{x_2}+6({x_1}+{x_2})+12}}=\frac{0}{{3{x_1}{x_2}+6({x_1}+{x_2})+12}}=0$.
解答 解:(Ⅰ)∵$e=\frac{{\sqrt{2}}}{2}$,∴$\frac{b^2}{a^2}=\frac{{{a^2}-{c^2}}}{a^2}=1-{e^2}=\frac{1}{2}$,
即a2=2b2(2分)
由$\left\{\begin{array}{l}y=x+3\\ \frac{x^2}{{2{b^2}}}+\frac{y^2}{b^2}=1\end{array}\right.$,得3x2+12x+18-2b2=0,
△=144-4×3(18-2b2)=0,(4分)
得b2=3,a2=6,所以椭圆方程为$\frac{x^2}{6}+\frac{y^2}{3}=1$.(5分)
(Ⅱ)设直线PQ的方程y=x+t,联立方程组$\left\{\begin{array}{l}y=x+t\\ \frac{x^2}{6}+\frac{y^2}{3}=1\end{array}\right.$
得3x2+4tx+2t2-6=0的两根为P(x1,y1),Q(x2,y2),(7分)
由题意得$M(\frac{{{x_1}+2}}{2},\frac{{{y_1}+1}}{2})$,$N(\frac{{{x_2}+2}}{2},\frac{{{y_2}+1}}{2})$,
由题意可知PQ∥MN,所以kPQ=kMN=1,(8分)
${x_1}+{x_2}=-\frac{4t}{3}$,${x_1}{x_2}=\frac{{2{t^2}-6}}{3}$,
${k_{OM}}+{k_{ON}}=\frac{{{y_1}+1}}{{{x_1}+2}}+\frac{{{y_2}+1}}{{{x_2}+2}}=\frac{{{x_1}+t+1}}{{{x_1}+2}}+\frac{{{x_2}+t+1}}{{{x_2}+2}}$
=$\frac{{2{x_1}{x_2}+(t+1+2)({x_1}+{x_2})+4(t+1)}}{{({x_1}+2)({x_2}+2)}}$
=$\frac{{2\frac{{2{t^2}-6}}{3}+(t+1+2)\frac{-4t}{3}+4(t+1)}}{{({x_1}+2)({x_2}+2)}}=0$,
所以OM,ON斜率之和是为定值0.(12分)
点评 本题考查了椭圆的方程,椭圆与直线的位置关系,定值问题的处理方法,属于中档题.
| A. | $\sqrt{5}$ | B. | $2\sqrt{5}$ | C. | $\sqrt{13}$ | D. | $2\sqrt{13}$ |