题目内容
已知公差不为0的等差数列{an}的前n项和为Sn,S9=a37+24,且a1,a4,a13成等比数列.
(1)求数列{an}的通项公式;
(2)求数列{
}的前n项和.
(1)求数列{an}的通项公式;
(2)求数列{
| 1 |
| Sn |
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(1)设等差数列{an}的公差为d,由题意列出方程组,求出公差和首项的值,即可得到数列{an}的通项公式.
(2)由(1)求出
=
=
(
-
),利用裂项相消求出和.
(2)由(1)求出
| 1 |
| Sn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
解答:
解:(1)∵S9=a37+24,且a1,a4,a13成等比数列.
∴
解得a1=3,d=2
∴an=a1+(n-1)d=2n+1
(2)由(1)知,Sn=
=
=n(n+2)
=
=
(
-
),
∴数列{
}的前n项和为
[(1-
)+(
-
)+(
-
)+…+(
-
)]
=
(1+
-
-
)
=
-
-
.
∴
|
∴an=a1+(n-1)d=2n+1
(2)由(1)知,Sn=
| (a1+an)n |
| 2 |
| (3+2n+1)n |
| 2 |
| 1 |
| Sn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴数列{
| 1 |
| Sn |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 1 |
| 2n+2 |
| 1 |
| 2n+4 |
点评:本题主要考查等比数列的定义和性质,等比数列的通项公式,等差数列的通项公式,用公式法和裂项相消法进行求和,属于中档题.
练习册系列答案
相关题目
复数z=
∈R,则实数a的值是( )
| a+i |
| 3-4i |
A、-
| ||
B、
| ||
C、
| ||
D、-
|