题目内容

4
2
1
x
dx(  )
A、-2ln2
B、ln 2
C、2 ln 2
D、-ln2
考点:定积分
专题:导数的综合应用
分析:因为被积函数的原函数为lnx,所以所求为lnx|
 
4
2
解答: 解:
4
2
1
x
dx=lnx|
 
4
2
=ln4-ln2=2ln2-ln2=ln2;
故选:B.
点评:本题考查了定积分的计算,关键是正确找出被积函数的原函数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网