题目内容

已知椭圆的焦点在x轴上,离心率为
2
3
,且过点P(1,
2
3
),求该椭圆的方程.
考点:椭圆的标准方程
专题:圆锥曲线的定义、性质与方程
分析:设椭圆方程为
x2
a2
+
y2
b2
=1
(a>b>0),由已知得
e=
c
a
=
2
3
1
a2
+
4
9b2
=1
a2=b2+c2
,由此能求出椭圆方程.
解答: 解:设椭圆方程为
x2
a2
+
y2
b2
=1
(a>b>0),
由已知得
e=
c
a
=
2
3
1
a2
+
4
9b2
=1
a2=b2+c2

解得a2=
9
5
,b2=1,
∴椭圆方程为
5x2
9
+y2=1
点评:本题考查椭圆方程的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网