题目内容

命题p:?x∈(0,
π
2
),3sinx-πx<0,则?p(  )
A、?x∈(0,
π
2
),3sinx-πx>0
B、?x0∈(0,
π
2
),3sinx0-πx0>0
C、?x∈(0,
π
2
),3sinx-πx≥0
D、?x0∈(0,
π
2
),3sinx0-πx0≥0
考点:命题的否定
专题:简易逻辑
分析:直接利用全称命题的否定是特称命题写出结果即可.
解答: 解:因为全称命题的否定是特称命题,所以命题p:?x∈(0,
π
2
),3sinx-πx<0,
则?p:?x0∈(0,
π
2
),3sinx0-πx0≥0.
故选:D.
点评:本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网