题目内容

设a,b∈R,则“2a+2b=2a+b”是“a+b≥2”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:不等式的解法及应用,简易逻辑
分析:根据充分条件和必要条件的定义结合不等式的性质进行判断即可.
解答: 解:若a=0,b=3,满足a+b≥2但2a+2b=1+8=9,2a+b=8,则2a+2b=2a+b不成立,
若2a+2b=2a+b,则2a+b=2a+2b≥2
2a2b
=2
2a+b

即(2a+b2≥4(2a+b),
解得2a+b≥4或2a+b≤0(舍去),
即a+b≥2成立,
即“2a+2b=2a+b”是“a+b≥2”的充分不必要条件,
故选:A
点评:本题主要考查充分条件和必要条件的判断,根据基本不等式的性质是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网