ÌâÄ¿ÄÚÈÝ

19£®ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£¬½¹¾àΪ2$\sqrt{2}$£¬Å×ÎïÏßC2£ºx2=2py£¨p£¾0£©µÄ½¹µãFÊÇÍÖÔ²C1µÄ¶¥µã£®
£¨¢ñ£©ÇóC1ÓëC2µÄ±ê×¼·½³Ì£»
£¨¢ò£©Éè¹ýµãFµÄÖ±Ïßl½»C2ÓÚP£¬QÁ½µã£¬ÈôC1µÄÓÒ¶¥µãAÔÚÒÔPQΪֱ¾¶µÄÔ²ÄÚ£¬ÇóÖ±ÏßlµÄбÂʵÄȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²µÄÐÔÖÊ£¬ÇóµÃaºÍcÔòÖµ£¬b2=a2-c2=1£¬ÇóµÃÍÖÔ²·½³Ì£¬ÓÉÅ×ÎïÏߵĽ¹µãÔÚyÖáÉÏ£¬Ôò$\frac{p}{2}$=1£¬ÇóµÃpµÄÖµ£¬ÇóµÃÅ×ÎïÏß·½³Ì£»
£¨¢ò£©½«Ö±Ïß·½³Ì´úÈëÅ×ÎïÏß·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°ÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËË㣬¼´¿ÉÇóµÃÖ±ÏßlµÄбÂʵÄȡֵ·¶Î§£®

½â´ð ½â£º£¨¢ñ£©ÉèÍÖÔ²C1µÄ½¹¾àΪ2c£¬ÒÀÌâÒâÓÐ2c=2$\sqrt{2}$£¬
Ôòc=$\sqrt{2}$£¬ÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$£¬Ôòa=$\sqrt{3}$£¬
b2=a2-c2=1£¬
¹ÊÍÖÔ²C1µÄ±ê×¼·½³Ì$\frac{{x}^{2}}{3}+{y}^{2}=1$£¬
ÓÖÅ×ÎïÏßC2½¹µãÔÚyÖáÕý°ëÖᣬÔòÅ×ÎïÏß½¹µãFÊÇÍÖÔ²µÄC1É϶¥µã£¬F£¨0£¬1£©£¬Ôòp=2£¬
¹ÊÅ×ÎïÏßC2µÄ±ê×¼·½³ÌΪx2=4y£»
£¨¢ò£©ÓÉÌâÒâ¿ÉÉèÖ±Ïߵķ½³ÌΪ£ºy=kx+1£¬ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}=4y}\end{array}\right.$£¬µÃx2-4kx-4=0£¬ÓÉΤ´ï¶¨ÀíµÃx1+x2=4k£¬x1x2=-4£®
A£¨$\sqrt{3}$£¬0£©ÔÚÒÔPQΪֱ¾¶µÄÔ²ÄÚ£¬
Ôò$\overrightarrow{AP}$•$\overrightarrow{AQ}$=£¨x1-$\sqrt{3}$£¬y1£©£¨x2-$\sqrt{3}$£¬y2£©=x1x2-$\sqrt{3}$£¨x1+x2£©+3+y1y2£¼0£¬
Ôò16x1x2-16$\sqrt{3}$£¨x1+x2£©+48+£¨x1x2£©2£¼0£¬¼´-64-16$\sqrt{3}$¡Á4k+48+16£¼0£¬½âµÃ£ºk£¾0
Ö±ÏßlµÄбÂʵÄȡֵ·¶Î§£¨0£¬+¡Þ£©£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²¼°Å×ÎïÏߵļòµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬ÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËË㣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø