ÌâÄ¿ÄÚÈÝ
10£®¶Ôij²úÆ·1ÖÁ6Ô·ÝÏúÊÛÁ¿¼°Æä¼Û¸ñ½øÐе÷²é£¬ÆäÊÛ¼ÛxºÍÏúÊÛÁ¿yÖ®¼äµÄÒ»×éÊý¾ÝÈç±íËùʾ£º| Ô·Ýi | 1 | 2 | 3 | 4 | 5 | 6 |
| µ¥¼Ûxi£¨Ôª£© | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
| ÏúÊÛÁ¿yi£¨¼þ£© | 11 | 10 | 8 | 6 | 5 | 14 |
£¨2£©ÈôÓɻعéÖ±Ïß·½³ÌµÃµ½µÄ¹À¼ÆÊý¾ÝÓëʣϵļìÑéÊý¾ÝµÄÎó²î²»³¬¹ý0.5Ôª£¬ÔòÈÏΪËùµÃµ½
µÄ»Ø¹é·½³ÌÊÇÀíÏëµÄ£¬ÊÔÎÊËùµÃ»Ø¹é·½³ÌÊÇ·ñÀíÏ룿
²Î¿¼¹«Ê½£º»Ø¹éÖ±Ïߵķ½³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$£¬
ÆäÖÐ$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$£®
·ÖÎö £¨1£©¸ù¾ÝÌâÒ⣬¼ÆËã$\overline{x}$¡¢$\overline{y}$£¬Çó³ö»Ø¹éϵÊý$\stackrel{¡Ä}{b}$¡¢$\stackrel{¡Ä}{a}$£¬Ð´³ö»Ø¹éÖ±Ïß·½³Ì£»
£¨2£©ÀûÓûع鷽³Ì¼ÆËãx=8ʱ$\stackrel{¡Ä}{y}$µÄÖµ£¬ÔÙÇó$\stackrel{¡Ä}{y}$-yµÄÖµ£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒ⣬¼ÆËã$\overline{x}$=$\frac{1}{5}$¡Á£¨9+9.5+10+10.5+11£©=10£¬
$\overline{y}$=$\frac{1}{5}$¡Á£¨11+10+8+6+5£©=8£®£¨ 2·Ö£©
$\sum_{i=1}^{5}$£¨xi-$\overline{x}$£©£¨yi-$\overline{y}$£©=£¨-1£©¡Á3+£¨-0.5£©¡Á2+0+0.5¡Á£¨-2£©+1¡Á£¨-3£©=-8£¬
$\sum_{i=1}^{5}$${{£¨x}_{i}-\overline{x}£©}^{2}$=1+0.25+0+0.25+1=2.5£»
¡à$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{-8}{2.5}$=-3.2£¬
$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$=8-£¨-3.2£©¡Á10=40£»
¡ày¹ØÓÚxµÄ»Ø¹éÖ±Ïß·½³ÌΪ$\stackrel{¡Ä}{y}$=-3.2x+40£»£¨ 8·Ö£©
£¨2£©µ±x=8ʱ£¬$\stackrel{¡Ä}{y}$=-3.2¡Á8+40=14.4£¬£¨ 10·Ö£©
$\stackrel{¡Ä}{y}$-y=14.4-14=0.4£¼0.5£¬
¡àËùµÃ»Ø¹é·½³ÌÊÇÀíÏëµÄ£®£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÁËÏßÐԻع鷽³ÌµÄÇó·¨ÓëÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡Ì⣮
| A£® | 1 | B£® | $\sqrt{2}$ | C£® | $\sqrt{3}$ | D£® | 3 |
| A£® | [-1£¬3] | B£® | £¨-1£¬3£© | C£® | £¨-¡Þ£¬-1]¡È[3£¬+¡Þ£© | D£® | £¨-¡Þ£¬-1£©¡È£¨3£¬+¡Þ£© |
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³ä·Ö±ØÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |