题目内容
20.在△ABC中,a,b,c分别为内角A,B,C的对边,若a=2,$C=\frac{π}{4}$,$cos\frac{B}{2}=\frac{{2\sqrt{5}}}{5}$,(1)求sinA;
(2)求△ABC的面积S.
分析 (1)由已知利用倍角公式可求cosB,利用同角三角函数基本关系式可求sinB,根据三角形内角和定理,两角和的正弦函数公式可求sinA的值.
(2)由(1)及正弦定理可得b,利用特殊角的三角函数值及三角形面积公式即可计算得解.
解答 解:(1)∵$cos\frac{B}{2}=\frac{{2\sqrt{5}}}{5}$,$C=\frac{π}{4}$,
∴cosB=2cos2$\frac{B}{2}$-1=$\frac{3}{5}$,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{4}{5}$,
∴sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{\sqrt{2}}{2}$×($\frac{3}{5}+\frac{4}{5}$)=$\frac{7\sqrt{2}}{10}$.
(2)∵a=2,sinA=$\frac{7\sqrt{2}}{10}$,sinB=$\frac{4}{5}$,
∴由正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{2×\frac{4}{5}}{\frac{7\sqrt{2}}{10}}$=$\frac{8\sqrt{2}}{7}$,
∴S△ABC=$\frac{1}{2}absinC$=$\frac{1}{2}×2×$$\frac{8\sqrt{2}}{7}$×$\frac{\sqrt{2}}{2}$=$\frac{8}{7}$.
点评 本题主要考查了倍角公式,同角三角函数基本关系式,三角形内角和定理,两角和的正弦函数公式,正弦定理,特殊角的三角函数值及三角形面积公式的应用,考查了转化思想,属于基础题.
练习册系列答案
相关题目
10.对某产品1至6月份销售量及其价格进行调查,其售价x和销售量y之间的一组数据如表所示:
(1)根据1至5月份的数据,求解y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到
的回归方程是理想的,试问所得回归方程是否理想?
参考公式:回归直线的方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,
其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
| 月份i | 1 | 2 | 3 | 4 | 5 | 6 |
| 单价xi(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
| 销售量yi(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到
的回归方程是理想的,试问所得回归方程是否理想?
参考公式:回归直线的方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,
其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
15.下列说法正确的是( )
| A. | “若a>1,则a2>1”的否命题是“若a>1,则a2≤1” | |
| B. | “x>2”是“$\frac{1}{x}<\frac{1}{2}$”的充要条件 | |
| C. | “若tanα≠$\sqrt{3}$,则$α≠\frac{π}{3}$”是真命题 | |
| D. | ?x0∈(-∞,0),使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立 |