题目内容
2.若命题“?x0∈R,x02+(a-1)x0+1≤0”的否定是真命题,则实数a的取值范围是( )| A. | [-1,3] | B. | (-1,3) | C. | (-∞,-1]∪[3,+∞) | D. | (-∞,-1)∪(3,+∞) |
分析 命题“?x0∈R,x02+(a-1)x0+1≤0”的否定是真命题,可得:“?x∈R,x2+(a-1)x+1>0”是真命题.
则△<0.
解答 解:命题“?x0∈R,x02+(a-1)x0+1≤0”的否定是真命题,
∴“?x∈R,x2+(a-1)x+1>0”是真命题.
∴△=(a-1)2-4<0,解得:-1<a<3.
则实数a的取值范围是(-1,3).
故选:B.
点评 本题考查了简易逻辑的应用、不等式的解法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
10.对某产品1至6月份销售量及其价格进行调查,其售价x和销售量y之间的一组数据如表所示:
(1)根据1至5月份的数据,求解y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到
的回归方程是理想的,试问所得回归方程是否理想?
参考公式:回归直线的方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,
其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
| 月份i | 1 | 2 | 3 | 4 | 5 | 6 |
| 单价xi(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
| 销售量yi(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到
的回归方程是理想的,试问所得回归方程是否理想?
参考公式:回归直线的方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,
其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
17.对于任意向量$\overrightarrow{a},\overrightarrow{b}$,下列命题中正确的是( )
| A. | 若$\overrightarrow{a},\overrightarrow{b}$满足|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,且$\overrightarrow{a}$与$\overrightarrow{b}$同向,则$\overrightarrow{a}$>$\overrightarrow{b}$ | B. | |$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$| | ||
| C. | |$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$| | D. | |$\overrightarrow{a}$-$\overrightarrow{b}$|≤|$\overrightarrow{a}$|-|$\overrightarrow{b}$| |