题目内容

15.已知数列{an} 通项公式为an=Atn-1+Bn+1,其中A,B,t 为常数,且t>1,n∈N*.等式(x2+2x+2)10=b0+b1(x+1)+b2(x+1)2+…+b20(x+1)20,其中bi(i=0,1,2,…,20)为实常数.
(1)若A=0,B=1,求$\sum_{n=1}^{10}{{a_n}{b_{2n}}}$ 的值;
(2)若A=1,B=0,是否存在常数t 使得$\sum_{n=1}^{10}{({2{a_n}-{2^n}}){b_{2n}}}$=2046?若存在,求常数t 的值,若不存在,说明理由.

分析 (1)A=0,B=1,an=n+1.(x2+2x+2)10=[(x+1)2+1]10=1+${∁}_{10}^{1}(x+1)^{2}$+${∁}_{10}^{2}(x+1)^{4}$+…+${∁}_{10}^{9}$(x+1)18+(x+1)20.与等式(x2+2x+2)10=b0+b1(x+1)+b2(x+1)2+…+b20(x+1)20,比较,其中bi(i=0,1,2,…,20)为实常数.可得b2n=${∁}_{10}^{n}$.因此$\sum_{n=1}^{10}{{a_n}{b_{2n}}}$=2${∁}_{10}^{1}$+$3{∁}_{10}^{2}$+…+10${∁}_{10}^{9}$+11${∁}_{10}^{10}$=${∁}_{10}^{1}$+$2{∁}_{10}^{2}$+…+$10{∁}_{10}^{10}$+${∁}_{10}^{1}+{∁}_{10}^{2}$+…+${∁}_{10}^{10}$=${∁}_{10}^{1}$+$2{∁}_{10}^{2}$+…+$10{∁}_{10}^{10}$+210-1.由(x+1)10=1+${∁}_{10}^{1}x$+${∁}_{10}^{2}{x}^{2}$+…+${∁}_{10}^{10}{x}^{10}$,两边求导可得:10(x+1)9=${∁}_{10}^{1}$+$2{∁}_{10}^{2}$x+…+$10{∁}_{10}^{10}$x9,令x=1可得:$2{∁}_{10}^{2}$+…+$10{∁}_{10}^{10}$,进而得出.
(2)A=1,B=0,an=tn-1+1.存在常数t=2使得$\sum_{n=1}^{10}{({2{a_n}-{2^n}}){b_{2n}}}$=2046.代入验证即可得出.

解答 解:(1)A=0,B=1,an=n+1.
(x2+2x+2)10=[(x+1)2+1]10=1+${∁}_{10}^{1}(x+1)^{2}$+${∁}_{10}^{2}(x+1)^{4}$+…+${∁}_{10}^{9}$(x+1)18+(x+1)20
又等式(x2+2x+2)10=b0+b1(x+1)+b2(x+1)2+…+b20(x+1)20,其中bi(i=0,1,2,…,20)为实常数.可得b2n=${∁}_{10}^{n}$.
∴$\sum_{n=1}^{10}{{a_n}{b_{2n}}}$=2${∁}_{10}^{1}$+$3{∁}_{10}^{2}$+…+10${∁}_{10}^{9}$+11${∁}_{10}^{10}$=${∁}_{10}^{1}$+$2{∁}_{10}^{2}$+…+$10{∁}_{10}^{10}$+${∁}_{10}^{1}+{∁}_{10}^{2}$+…+${∁}_{10}^{10}$=${∁}_{10}^{1}$+$2{∁}_{10}^{2}$+…+$10{∁}_{10}^{10}$+210-1.
由(x+1)10=1+${∁}_{10}^{1}x$+${∁}_{10}^{2}{x}^{2}$+…+${∁}_{10}^{10}{x}^{10}$,两边求导可得:10(x+1)9=${∁}_{10}^{1}$+$2{∁}_{10}^{2}$x+…+$10{∁}_{10}^{10}$x9
令x=1可得:$2{∁}_{10}^{2}$+…+$10{∁}_{10}^{10}$=10×29
∴$\sum_{n=1}^{10}{{a_n}{b_{2n}}}$=10×29+210-1=3×211-1.
(2)A=1,B=0,an=tn-1+1.存在常数t=2使得$\sum_{n=1}^{10}{({2{a_n}-{2^n}}){b_{2n}}}$=2046.
∵$\sum_{n=1}^{10}{({2{a_n}-{2^n}}){b_{2n}}}$=$\sum_{n=1}^{10}$(2tn-1+2-2n)${∁}_{10}^{n}$=$\sum_{n=1}^{10}$(2n+2-2n)${∁}_{10}^{n}$=2$\sum_{n=1}^{10}$${∁}_{10}^{n}$=2(210-1)=2046,
∴存在常数t=2使得$\sum_{n=1}^{10}{({2{a_n}-{2^n}}){b_{2n}}}$=2046.

点评 本题考查了二项式定理的应用、导数的运算性质、方程思想方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网