题目内容

已知x=
1
2
是f(x)=2x-
b
x
+lnx的一个极值点
(1)求b的值;
(2)求函数f(x)的单调增区间;
(3)设g(x)=f(x)-
1
x
,求过点P(2,5)的曲线y=g(x)的切线方程.
考点:利用导数研究函数的极值,利用导数研究函数的单调性,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(Ⅰ)解f′(
1
2
)=0得到b值,再验证x=
1
2
为极值点.
(Ⅱ)在定义域内解不等式f′(x)>0即可.
(Ⅲ)设切点坐标,表示出切线方程,转化为方程的解的个数问题,进一步利用数形结合即可求得.
解答: 解:(Ⅰ)函数f(x)的定义域为(0,+∞).
f′(x)=2+
b
x2
+
1
x
,∵x=
1
2
是f(x)=2x-
b
x
+lnx的一个极值点,
∴f′(
1
2
)=0,即 2+4b+2=0,得b=-1,当b=-1时,f′(x)=
(2x-1)(x+1)
x2

当0<x<
1
2
时,f′(x)<0;当x
1
2
时,f′(x)>0,所以x=
1
2
为f(x)的极小值点,
所以b=-1.
(Ⅱ)由(Ⅰ)知f′(x)=
(2x-1)(x+1)
x2

令f′(x)>0得x>
1
2

∴函数f(x)的单调增区间为[
1
2
,+∞).
(Ⅲ)g(x)=f(x)-
1
x
=2x+lnx,
设切点坐标为(x0,2x0+lnx0),则斜率为2+
1
x0
,切线方程为:y-5=(2+
1
x0
)(x-2).
∴又切线过点(2,5),∴5-2x0-lnx0=(2+
1
x0
)(2-x0),
即lnx0+
2
x0
-2=0.解得x0=1,
∴切线方程为:y-5=3(x-2),即3x-y-1=0.
点评:本题考查了应用导数研究函数的极值、单调性问题,难度稍大,注意本题中数形结合思想与转化思想的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网