题目内容

已知实数x,y满足
x-y+6≥0
x+y≥0
x≤3
,则z=x+2y的最大值为(  )
A、-3B、21C、3D、24
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
设z=x+2y得y=-
1
2
x+
z
2

平移直线y=-
1
2
x+
z
2
,由图象可知当直线y=-
1
2
x+
z
2
经过点A时,
直线y=-
1
2
x+
z
2
的截距最大,此时z最大,
x=3
x-y+6=0
,解得
x=3
y=9
,即C(3,9)
此时z=3+2×9=21,
故选:B.
点评:本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网