题目内容
在区间[0,π]内随机取两个数分别记为a、b,则使得函数f(x)=x2+2ax-b2+π有零点的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
考点:几何概型
专题:计算题,概率与统计
分析:先判断概率的类型,由题意知本题是一个几何概型,由a,b使得函数f(x)=x2+2ax-b2+π有零点,得到关于a、b的关系式,写出试验发生时包含的所有事件和满足条件的事件,做出对应的面积,求比值得到结果.
解答:
解:由题意知本题是一个几何概型,
∵a,b使得函数f(x)=x2+2ax-b2+π有零点,
∴△≥0
∴a2+b2≥π
试验发生时包含的所有事件是Ω={(a,b)|0≤a≤π,0≤b≤π}
∴S=π2,
而满足条件的事件是{(a,b)|a2+b2≥π},
∴s=π2-
π2=
π2,
由几何概型公式得到P=
,
故选:B.
∵a,b使得函数f(x)=x2+2ax-b2+π有零点,
∴△≥0
∴a2+b2≥π
试验发生时包含的所有事件是Ω={(a,b)|0≤a≤π,0≤b≤π}
∴S=π2,
而满足条件的事件是{(a,b)|a2+b2≥π},
∴s=π2-
| 1 |
| 4 |
| 3 |
| 4 |
由几何概型公式得到P=
| 3 |
| 4 |
故选:B.
点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.
练习册系列答案
相关题目
已知函数f(x)=2sin(ωx+φ)(ω>0,-
<φ<
)的图象关于直线x=
对称,它的周期为π,则( )
| π |
| 2 |
| π |
| 2 |
| 2π |
| 3 |
A、f(x)的图象过(0,
| ||||
B、f(x)在[
| ||||
C、f(x)的一个对称中心是(
| ||||
| D、将f(x)的图象向右平移|φ|个单位得到函数y=2sinωx的图象 |
已知直线a,b和平面α,其中a?α,b?α,则“a∥b”是“a∥α”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |
设等差数列{an}的前n项和为Sn,若S3=9,S5=30,则a7+a8+a9=( )
| A、27 | B、36 | C、42 | D、63 |
已知函数f(x)=x2+mx+n(m,n∈R)的值域为[0,+∞),若关于x的不等式f(x)<a-1的解集为(m-3,m+2),则实数a的值是( )
A、
| ||
B、
| ||
| C、6 | ||
D、
|
动点A(x,y)在单位圆x2+y2=1上绕圆心顺时针方向匀速旋转,12秒旋转一周.已知t=0时点A(
,
),则当0≤t≤12时,动点A的纵坐标y关于t的函数y=f(t)的单调增区间是( )
| 1 |
| 2 |
| ||
| 2 |
| A、[0,5] |
| B、[5,11] |
| C、[11,12] |
| D、[0,5]和[11,12] |