题目内容

在△ABC 中,若bcosA=acosB,则该三角形是(  )
A、等腰三角形
B、锐角三角形
C、等腰直角三角形
D、等腰或直角三角形
考点:三角形的形状判断
专题:解三角形
分析:应用正弦定理和已知条件,得到sin(A-B)=0,故有A-B=0,得到△ABC为等腰三角形.
解答: 解:∵在△ABC中,acosB=bcosA,
由正弦定理可得,sinAcosB=cosAsinB,即sinAcosB-cosAsinB=0,
∴sin(A-B)=0.
由-π<A-B<π 得,A-B=0,
则△ABC为等腰三角形,
故选:A.
点评:本题考查了三角形的形状判断,涉及的知识有正弦定理,两角和与差的正弦函数公式,以及正弦函数的图象与性质,根据三角函数值求角的大小,推出sin(A-B)=0 是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网