题目内容
数列{an}的前n项和为Sn,且Sn=n(n+1),数列{bn}满足bn=3n•an.
(Ⅰ)求数列{an}的通项公式,
(Ⅱ)求数列{bn}的前n项和.
(Ⅰ)求数列{an}的通项公式,
(Ⅱ)求数列{bn}的前n项和.
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)通过Sn求Sn-1,然后两式相减得出an的递推形式,an=
,不要忘了验证
是否满足an,从而求出数列{an}的通项公式.
(Ⅱ)先求出bn,由形式判定求和用错位相减法,即先列出Sn,然后列出3Sn,让Sn-3Sn,经过计算,求出数列{bn}的前n项和.
|
| a | 1 |
(Ⅱ)先求出bn,由形式判定求和用错位相减法,即先列出Sn,然后列出3Sn,让Sn-3Sn,经过计算,求出数列{bn}的前n项和.
解答:
解:(Ⅰ)∵Sn=n(n+1),
∴当n=1时,a1=S1=1(1+1)=2,
当n≥2时,an=Sn-Sn-1=n(n+1)-(n-1)n=2n,
当n=1时,上式成立,
∴an=2n.
(Ⅱ)∵bn=3n•an=2n•3n,
∴Sn=2×1×3+2×2×32+2×3×33+…+2×n×3n,①
3Sn=2×2×32+2×2×33+2×3×34+…+2×n×3n+1,②
①-②得-2Sn=2×1×3+2×1×32+2×1×33+…+2×1×3n-2×n×3n+1
=2×
-2n•3n+1
=3(3n-1)-2n•3n+1
=3n+1-3-2n•3n+1
=(1-2n)•3n+1-3,
∴Sn=
•3n+1+
.
∴当n=1时,a1=S1=1(1+1)=2,
当n≥2时,an=Sn-Sn-1=n(n+1)-(n-1)n=2n,
当n=1时,上式成立,
∴an=2n.
(Ⅱ)∵bn=3n•an=2n•3n,
∴Sn=2×1×3+2×2×32+2×3×33+…+2×n×3n,①
3Sn=2×2×32+2×2×33+2×3×34+…+2×n×3n+1,②
①-②得-2Sn=2×1×3+2×1×32+2×1×33+…+2×1×3n-2×n×3n+1
=2×
| 3(1-3n) |
| 1-3 |
=3(3n-1)-2n•3n+1
=3n+1-3-2n•3n+1
=(1-2n)•3n+1-3,
∴Sn=
| 2n-1 |
| 2 |
| 3 |
| 2 |
点评:本题考查数列的通项公式和前n项和的求法,计算量较大,但思路清晰,是中档题.
练习册系列答案
相关题目