题目内容
3.设α,β,γ为三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n?γ且(1)或(3),则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.(1)α∥γ,n?β; (2)m∥γ,n∥β;(3)n∥β,m?γ.可以填入的条件有(1)或(3).
分析 可以在横线处填入的条件是(1),即“若α∩β=m,n?γ,且α∥γ,n?β,则m∥n”为真命题.如图2所示,由α∩β=m,可得m?β,可得β∩γ=n,已知α∥γ,利用线面平行的性质定理可得m∥n;
在横线处填入的条件不能是(2).如图3所示,即“若α∩β=m,n?γ,且m∥γ,n∥β;则m∥n”为假命题.举反例:假设α∩γ=l,由m∥γ,可得m∥l.若n∩l=P,则m与n必不平行,否则与n∩lP相矛盾;
可以在横线处填入的条件是(3).如图1所示,即“若α∩β=m,n?γ,且m?γ,n∥β,则m∥n”为真命题.利用同一平面内两条直线的位置关系可得m∥n或m∩n=P,由反证法排除m∩n=P即可.
解答 解:可以在横线处填入的条件是(1).![]()
即若α∩β=m,n?γ,且α∥γ,n?β,则m∥n”为真命题.
证明如下:如图2所示,∵α∩β=m,∴m?β,
∵n?γ,n?β,∴β∩γ=n,
又α∥γ,∴m∥n;
在横线处填入的条件不能是(2).
如图3所示,即“若α∩β=m,n?γ,且m∥γ,n∥β;则m∥n”为假命题.
证明:假设α∩γ=l,∵m∥γ,∴m∥l.
若n∩l=P,则m与n必不平行,否则与n∩lP相矛盾;![]()
可以在横线处填入的条件是 (3).
即若α∩β=m,n?γ,且m?γ,n∥β,则m∥n”为真命题.
如图1所示,
证明如下:∵α∩β=m,n?γ,m?γ,∴m∥n或m∩n=P,
假设m∩n=P,则P∈n,P∈m,又α∩β=m,∴P∈β,
这与n∥β相矛盾,因此m∩n=P不成立,故m∥n.
故答案为:(1)或(3).![]()
点评 本题考查命题的真假判断与应用,考查空间想象能力和思维能力,是中档题.
练习册系列答案
相关题目
13.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F(c,0),作圆x2+y2=$\frac{{a}^{2}}{4}$的切线,切点为E,延长FE交双曲线左支于点M,且E是MF的中点,则双曲线离心率为( )
| A. | $\sqrt{10}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\frac{\sqrt{10}}{5}$ | D. | 2$\sqrt{10}$ |
18.已知f(x)=3sin(2x+$\frac{π}{4}$)-1.
(1)f(x)的图象是由y=sin x的图象如何变换而来?
(2)求f(x)的最小正周期、图象的对称轴方程、最大值及其对应的x的值.
(1)f(x)的图象是由y=sin x的图象如何变换而来?
(2)求f(x)的最小正周期、图象的对称轴方程、最大值及其对应的x的值.
8.正方体ABCD-A1B1C1D1中,截面BA1C1和直线AC的位置关系是( )
| A. | AC∥平面BA1C1 | B. | AC与平面BA1C1相交 | ||
| C. | AC在平面BA1C1内 | D. | 上述答案均不正确 |