题目内容

13.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F(c,0),作圆x2+y2=$\frac{{a}^{2}}{4}$的切线,切点为E,延长FE交双曲线左支于点M,且E是MF的中点,则双曲线离心率为(  )
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{2}$C.$\frac{\sqrt{10}}{5}$D.2$\sqrt{10}$

分析 原点O为两焦点的中点,利用中位线的性质,求出PF′的长度及判断出PF′垂直于PF,通过勾股定理得到a,c的关系,进而求出双曲线的离心率.

解答 解:如图,记右焦点为F′,则O为FF′的中点,
∵E为PF的中点,∴OE为△FF′P的中位线,∴PF′=2OE=a,
∵E为切点,∴OE⊥PF,∴PF′⊥PF,
∵点P在双曲线上,∴PF-PF′=2a,∴PF=PF′+2a=3a,
在Rt△PFF′中,有:PF2+PF′2=FF′2,∴9a2+a2=4c2,即10a2=4c2
∴离心率e=$\sqrt{\frac{{c}^{2}}{{a}^{2}}}=\frac{\sqrt{10}}{2}$,
故选:B.

点评 本题考查双曲线的简单性质、圆的方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网