题目内容
二项式(x+1)7的展开式中含x3项的系数值为 .
考点:二项式系数的性质
专题:二项式定理
分析:先求得二项式展开式的通项公式,再令x的幂指数等于3,求得r的值,即可求得含x3项的系数值.
解答:
解:二项式(x+1)7的展开式的通项公式为Tr+1=
•x7-r,
令7-r=3,求得 r=4,可得展开式中含x3项的系数值为
=35,
故答案为:35.
| C | r 7 |
令7-r=3,求得 r=4,可得展开式中含x3项的系数值为
| C | 4 7 |
故答案为:35.
点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
练习册系列答案
相关题目