题目内容
5.高二学生日均使用手机时间的频数分布表
| 时间分组 | 频数 |
| [0,20) | 12 |
| [20,40) | 20 |
| [40,60) | 24 |
| [60,80) | 26 |
| [80,100) | 14 |
| [100,120] | 4 |
(Ⅱ)在高一的抽查中,已知随机抽到的女生共有55名,其中10名为“手机迷”.根据已知条件完成下面的2×2列联表,并据此资料你有多大的把握认为“手机迷”与性别有关?
| 非手机迷 | 手机迷 | 合计 | |
| 男 | 30 | 15 | 45 |
| 女 | 45 | 10 | 55 |
| 合计 | 75 | 25 | 100 |
| 参考数据 | P(k2≥x0) | 0.15 | 0.10 | 0.05 | 0.025 |
| x0 | 2.072 | 2.706 | 3.841 | 5.024 |
分析 (Ⅰ)将频率视为概率,即可得出结论.
(Ⅱ)利用频率分布直方图直接完成2×2列联表,通过计算K2,说明有90%的把握认为“手机迷”与性别有关.
解答 解:(Ⅰ)由频率分布直方图可知,高一学生是“手机迷”的概率为P1=(0.0025+0.010)×20=0.25(2分)
由频数分布表可知,高二学生是“手机迷”的概率为${P_2}=\frac{14+4}{100}=0.18$(4分)
因为P1>P2,所以高一年级的学生是“手机迷”的概率大.(5分)
(Ⅱ)由频率分布直方图可知,在抽取的100人中,
“手机迷”有(0.010+0.0025)×20×100=25(人),
非手机迷有100-25=75(人).(6分)
从而2×2列联表如下:
| 非手机迷 | 手机迷 | 合计 | |
| 男 | 30 | 15 | 45 |
| 女 | 45 | 10 | 55 |
| 合计 | 75 | 25 | 100 |
将2×2列联表中的数据代入公式计算,得${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}=\frac{{100×{{(30×10-45×15)}^2}}}{75×25×45×55}=\frac{100}{33}≈3.030$(11分)
因为3.030>2.706,所以有90%的把握认为“手机迷”与性别有关.(12分)
点评 本题考查独立性检验以及概率的计算,考查基本知识的应用,属于中档题.
练习册系列答案
相关题目
13.一个口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两个球,则摸出的两个都是白球的概率是( )
| A. | $\frac{2}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{1}{5}$ | D. | $\frac{7}{10}$ |
20.已知函数f(x)=-lnx+x+h,在区间$[{\frac{1}{e},e}]$上任取三个实数a,b,c均存在以f(a),f(b),f(c)为边长的三角形,则实数h的取值范围是( )
| A. | (-∞,-1) | B. | (-∞,e-3) | C. | (-1,+∞) | D. | (e-3,+∞) |