题目内容
数列{an}中,Sn=2an+(-1)n.
(1)求数列{an}的通项公式;
(2)当m>4时,证明
+
+…+
<
.
(1)求数列{an}的通项公式;
(2)当m>4时,证明
| 1 |
| a4 |
| 1 |
| a8 |
| 1 |
| am |
| 7 |
| 8 |
考点:数列与不等式的综合
专题:计算题,证明题,等差数列与等比数列,不等式
分析:(1)①当n=1时,a1=2a1-1,解得a1=1;
②当n≥2时,an=Sn-Sn-1,化简可得an+
(-1)n=2(an-1+
(-1)n-1),则可得{an+
(-1)n}是以
为首项,2为公比的等比数列,从而求数列{an}的通项公式;
(2)设m=4n,n∈N*,
=
=
=
(
-
);利用放缩法可得
+
+…+
=
(
-
)+
(
-
)+
(
-
)
<
(
-
)+
(
-
)+
(
-
),从而证明
+
+…+
<
.
②当n≥2时,an=Sn-Sn-1,化简可得an+
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
(2)设m=4n,n∈N*,
| 1 |
| am |
| 1 | ||||
|
| 6 |
| 24n-4 |
| 3 |
| 2 |
| 1 |
| 22n-2 |
| 1 |
| 22n+2 |
| 1 |
| a4 |
| 1 |
| a8 |
| 1 |
| am |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 6 |
| 3 |
| 2 |
| 1 |
| 14 |
| 1 |
| 18 |
| 3 |
| 2 |
| 1 |
| 22n-2 |
| 1 |
| 22n+2 |
<
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 6 |
| 3 |
| 2 |
| 1 |
| 6 |
| 1 |
| 7 |
| 3 |
| 2 |
| 1 |
| n+4 |
| 1 |
| n+5 |
| 1 |
| a4 |
| 1 |
| a8 |
| 1 |
| am |
| 7 |
| 8 |
解答:
解:(1)由题意,
①当n=1时,a1=2a1-1,
解得a1=1;
②当n≥2时,an=Sn-Sn-1=(2an+(-1)n)-(2an-1+(-1)n-1)
=2an-2an-1+2(-1)n,
∴an=2an-1-2(-1)n,
设an+a(-1)n=2(an-1+a(-1)n-1),
则2a(-1)n-1-a(-1)n=-2(-1)n,
解得,a=
,
则an=2an-1-2(-1)n可化为an+
(-1)n=2(an-1+
(-1)n-1),
又∵a1+
(-1)=1-
=
,
故{an+
(-1)n}是以
为首项,2为公比的等比数列,
则an=
•2n-1-
(-1)n,对a1=1也成立;
故an=
•2n-1-
(-1)n.
(2)证明:设m=4n,n∈N*,
=
=
=
(
-
);
则
+
+…+
=
(
-
)+
(
-
)+
(
-
)
<
(
-
)+
(
-
)+
(
-
)
=
-
•
<
<
.
①当n=1时,a1=2a1-1,
解得a1=1;
②当n≥2时,an=Sn-Sn-1=(2an+(-1)n)-(2an-1+(-1)n-1)
=2an-2an-1+2(-1)n,
∴an=2an-1-2(-1)n,
设an+a(-1)n=2(an-1+a(-1)n-1),
则2a(-1)n-1-a(-1)n=-2(-1)n,
解得,a=
| 2 |
| 3 |
则an=2an-1-2(-1)n可化为an+
| 2 |
| 3 |
| 2 |
| 3 |
又∵a1+
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
故{an+
| 2 |
| 3 |
| 1 |
| 3 |
则an=
| 1 |
| 3 |
| 2 |
| 3 |
故an=
| 1 |
| 3 |
| 2 |
| 3 |
(2)证明:设m=4n,n∈N*,
| 1 |
| am |
| 1 | ||||
|
=
| 6 |
| 24n-4 |
| 3 |
| 2 |
| 1 |
| 22n-2 |
| 1 |
| 22n+2 |
则
| 1 |
| a4 |
| 1 |
| a8 |
| 1 |
| am |
=
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 6 |
| 3 |
| 2 |
| 1 |
| 14 |
| 1 |
| 18 |
| 3 |
| 2 |
| 1 |
| 22n-2 |
| 1 |
| 22n+2 |
<
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 6 |
| 3 |
| 2 |
| 1 |
| 6 |
| 1 |
| 7 |
| 3 |
| 2 |
| 1 |
| n+4 |
| 1 |
| n+5 |
=
| 3 |
| 4 |
| 3 |
| 2 |
| 1 |
| n+5 |
| 3 |
| 4 |
| 7 |
| 8 |
点评:本题考查了数列的通项公式的求法,构造一个新数列的方法,同时考查了放缩法证明不等式,属于难题.
练习册系列答案
相关题目