题目内容
已知
、
是夹角为60°的两个单位向量,且
⊥
,
⊥
,且|
|=
,
=2
-
+
,
=3
-
-
,则cos<
,
>= .
| a |
| b |
| c |
| a |
| c |
| b |
| c |
| 3 |
| x |
| a |
| b |
| c |
| y |
| b |
| a |
| c |
| x |
| y |
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:由条件得到|
|=|
|=1,
•
=
,
•
=
•
=0,分别求出向量x,y的模和数量积,即可得到夹角的余弦.
| a |
| b |
| a |
| b |
| 1 |
| 2 |
| c |
| a |
| c |
| b |
解答:
解:由于
、
是夹角为60°的两个单位向量,
则|
|=|
|=1,
•
=
,
由于
⊥
,
⊥
,则
•
=
•
=0,
由于
•
=7
•
+4
•
-3
•
-2
2-3
2-
2
=
-2-3-3=-
,
|
|=
=
=
,
|
|=
=
=
,
则cos<
,
>=
=
=-
故答案为:-
| a |
| b |
则|
| a |
| b |
| a |
| b |
| 1 |
| 2 |
由于
| c |
| a |
| c |
| b |
| c |
| a |
| c |
| b |
由于
| x |
| y |
| a |
| b |
| b |
| c |
| a |
| c |
| a |
| b |
| c |
=
| 7 |
| 2 |
| 9 |
| 2 |
|
| x |
4
|
=
| 4+1+3-2 |
| 6 |
|
| y |
9
|
=
| 9+1+3-3 |
| 10 |
则cos<
| x |
| y |
| ||||
|
|
-
| ||||
|
3
| ||
| 20 |
故答案为:-
3
| ||
| 20 |
点评:本题考查向量的数量积的坐标公式和性质,考查向量夹角的计算,属于中档题.
练习册系列答案
相关题目