题目内容
已知数列{an}中,a1=1,an+1=
.
(Ⅰ)求{an}的通项公式;
(Ⅱ)证明:对一切正整数n,有
+
+
+…+
<
.
| an |
| an+1 |
(Ⅰ)求{an}的通项公式;
(Ⅱ)证明:对一切正整数n,有
| a1 |
| 1 |
| a2 |
| 2 |
| a3 |
| 3 |
| an |
| n |
| 7 |
| 4 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件推导出{
}是以1为首项,1为公差的等差数列,由此能求出an=
.
(Ⅱ)由(Ⅰ)知
=
,n∈N*,所以
+
+…+
=1+
+
+…+
<1+
+
+…+
,由此能证明
+
+
+…+
<
.
| 1 |
| an |
| 1 |
| n |
(Ⅱ)由(Ⅰ)知
| an |
| n |
| 1 |
| n2 |
| a1 |
| 1 |
| a2 |
| 2 |
| an |
| n |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 4 |
| 1 |
| 2×3 |
| 1 |
| (n-1)×n |
| a1 |
| 1 |
| a2 |
| 2 |
| a3 |
| 3 |
| an |
| n |
| 7 |
| 4 |
解答:
解:(1)∵an+1=
,a1=1,
∴an≠0,∴
=
+1,
∴
-
=1,
∴{
}是以1为首项,1为公差的等差数列,
∴
=
+(n-1)×1=1+n-1=n,
∴an=
.
(Ⅱ)证明:由(Ⅰ)知
=
,n∈N*,
+
+…+
=1+
+
+…+
<1+
+
+…+
=1+
+
-
+…+
-
=
-
<
.
∴
+
+
+…+
<
.
| an |
| an+1 |
∴an≠0,∴
| 1 |
| an+1 |
| 1 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| an |
∴{
| 1 |
| an |
∴
| 1 |
| an |
| 1 |
| a1 |
∴an=
| 1 |
| n |
(Ⅱ)证明:由(Ⅰ)知
| an |
| n |
| 1 |
| n2 |
| a1 |
| 1 |
| a2 |
| 2 |
| an |
| n |
=1+
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
<1+
| 1 |
| 4 |
| 1 |
| 2×3 |
| 1 |
| (n-1)×n |
=1+
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
=
| 7 |
| 4 |
| 1 |
| n |
| 7 |
| 4 |
∴
| a1 |
| 1 |
| a2 |
| 2 |
| a3 |
| 3 |
| an |
| n |
| 7 |
| 4 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意放缩法的合理运用.
练习册系列答案
相关题目
已知函数f(x)满足f(x+2)=f(x-2),y=f(x-2)关于y轴对称,当x∈(0,2)时,f(x)=log2x2,则下列结论中正确的是( )
| A、f(4.5)<f(7)<f(6.5) |
| B、f(7)<f(4.5)<f(6.5) |
| C、f(7)<f(6.5)<f(4.5) |
| D、f(4.5)<f(6.5)<f(7) |