题目内容

已知数列{an}中,a1=1,an+1=
an
an+1

(Ⅰ)求{an}的通项公式;
(Ⅱ)证明:对一切正整数n,有
a1
1
+
a2
2
+
a3
3
+…+
an
n
7
4
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件推导出{
1
an
}是以1为首项,1为公差的等差数列,由此能求出an=
1
n

(Ⅱ)由(Ⅰ)知
an
n
=
1
n2
,n∈N*,所以
a1
1
+
a2
2
+…+
an
n
=1+
1
22
+
1
32
+…+
1
n2
<1+
1
4
+
1
2×3
+…+
1
(n-1)×n
,由此能证明
a1
1
+
a2
2
+
a3
3
+…+
an
n
7
4
解答: 解:(1)∵an+1=
an
an+1
,a1=1,
∴an≠0,∴
1
an+1
=
1
an
+1

1
an+1
-
1
an
=1

∴{
1
an
}是以1为首项,1为公差的等差数列,
1
an
=
1
a1
+(n-1)×1=1+n-1=n

an=
1
n

(Ⅱ)证明:由(Ⅰ)知
an
n
=
1
n2
,n∈N*
a1
1
+
a2
2
+…+
an
n

=1+
1
22
+
1
32
+…+
1
n2

<1+
1
4
+
1
2×3
+…+
1
(n-1)×n

=1+
1
4
+
1
2
-
1
3
+…+
1
n-1
-
1
n

=
7
4
-
1
n
7
4

a1
1
+
a2
2
+
a3
3
+…+
an
n
7
4
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意放缩法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网