题目内容

在某医院,因为患心脏病而住院的60名男性病人中有40人秃顶;而另外50名不是因为患心脏病而住院的男性病人中有20人秃顶.求:
(1)根据题目所给的数据列出2×2列联表:
(2)能否在犯错误的概率不超过0.01的前提下认为秃顶与患心脏病有关系?(附录(1):利用随机变量公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
可得观测值为k.(2)参照附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
考点:独立性检验的应用
专题:计算题,概率与统计
分析:(1)根据条件中所给的数据,列出列联表,填上对应的数据,得到列联表.
(2)假设秃顶与患心脏病没有关系,根据列联表,把求得的数据代入求观测值的公式求出观测值,把观测值同临界值进行比较得到结论.
解答: 解:(1)根据题目所给的数据得出2×2列联表:
患心脏病患其他病合计
秃顶402060
不秃顶203050
合计6050110
(2)由K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
算得,K2=
110×(40×30-20×20)2
60×50×60×50
≈7.8.
对照附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
得,在犯错误的概率不超过0.01的前提下认为秃顶与患心脏病有关系.
点评:本题考查独立性检验的应用,本题解题的关键是根据所给的数据填在列联表中,注意数据的位置不要出错.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网