题目内容
已知双曲线
-
=1(a>0,b>0)的左、有焦点分别为F1,F2,若在双曲线的右支上存在一点P,使得|PF1|=3|PF2|,则双曲线的离心率e的取值范围为 .
| x2 |
| a2 |
| y2 |
| b2 |
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:设P点的横坐标为x,根据|PF1|=3|PF2|,P在双曲线右支(x≥a),利用双曲线的第二定义,可得x关于e的表达式,进而根据x的范围确定e的范围.
解答:
解:设P点的横坐标为x
∵|PF1|=3|PF2|,P在双曲线右支(x≥a)
根据双曲线的第二定义,可得3e(x-
)=e(x+
),
∴ex=2a
∵x≥a,∴ex≥ea
∴2a≥ea,∴e≤2
∵e>1,∴1<e≤2
故答案为:1<e≤2.
∵|PF1|=3|PF2|,P在双曲线右支(x≥a)
根据双曲线的第二定义,可得3e(x-
| a2 |
| c |
| a2 |
| c |
∴ex=2a
∵x≥a,∴ex≥ea
∴2a≥ea,∴e≤2
∵e>1,∴1<e≤2
故答案为:1<e≤2.
点评:本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于基础题.
练习册系列答案
相关题目