题目内容

3.已知函数$f(x)=sin({ωx+φ})({ω>0,0<φ<\frac{π}{2}})$的图象经过点$({0,\frac{1}{2}})$,且相邻两条对称轴的距离为$\frac{π}{2}$,则函数f(x)在[0,π]上的单调递减区间为[$\frac{π}{6}$,$\frac{2π}{3}$].

分析 利用函数图象的性质求出f(x)的解析式,根据正弦函数的单调性得出f(x)的单调减区间.

解答 解:∵f(x)的图象过点(0,$\frac{1}{2}$),∴sinφ=$\frac{1}{2}$,∵0<φ<$\frac{π}{2}$,∴φ=$\frac{π}{6}$.
∵f(x)的图象相邻两条对称轴的距离为$\frac{π}{2}$,∴T=$\frac{2π}{ω}$=π,∴ω=2.
∴f(x)=sin(2x+$\frac{π}{6}$),
令$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,解得$\frac{π}{6}$+kπ≤x≤$\frac{2π}{3}$+kπ,k∈Z.
∴函数f(x)在[0,π]上的单调递减区间为[$\frac{π}{6}$+kπ,$\frac{2π}{3}$+kπ]∩[0,π]=[$\frac{π}{6}$,$\frac{2π}{3}$].
故答案为:$[\frac{π}{6},\frac{2π}{3}]$.

点评 本题考查了正弦函数的图象与性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网