题目内容
11.在Rt△ABC中,∠B=60°过直角顶点A在∠BAC内随机作射线AD,交斜边BC于点D,则BD>BA的概率为( )| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{{\sqrt{3}}}{4}$ |
分析 取BC中点E,因为∠BAC=90°,BD>BA,则射线AD在∠EAC内,∠EAC=30°,然后利用几何概型公式求概率.
解答 解:取BC中点E,因为∠BAC=90°,BD>BA,
则射线AD在∠EAC内,∠EAC=30°,
$P(BD>BA)=\frac{{{{30}°}}}{{{{90}°}}}=\frac{1}{3}$.
故选A.
点评 本题主要考查了几何概型的概率公式,将所求的概率进行等价转化为等价的几何测度,是解决几何概型问题的关键.
练习册系列答案
相关题目
19.椭圆E的焦点在x轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆E的标准方程为( )
| A. | $\frac{x^2}{2}+\frac{y^2}{{\sqrt{2}}}=1$ | B. | $\frac{x^2}{2}+{y^2}=1$ | C. | $\frac{x^2}{4}+\frac{y^2}{2}=1$ | D. | $\frac{y^2}{4}+\frac{x^2}{2}=1$ |
6.某研究型学习小组调查研究”中学生使用智能手机对学习的影响”.部分统计数据如表:
参考数据:
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d
(Ⅰ)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用智能手机对学习有影响?
(Ⅱ)研究小组将该样本中使用智能手机且成绩优秀的4位同学记为A组,不使用智能手机且成绩优秀的8位同学记为B组,计划从A组推选的2人和B组推选的3人中,随机挑选两人在学校升旗仪式上作“国旗下讲话”分享学习经验.求挑选的两人恰好分别来自A、B两组的概率.
| 使用智能手机人数 | 不使用智能手机人数 | 合计 | |
| 学习成绩优秀人数 | 4 | 8 | 12 |
| 学习成绩不优秀人数 | 16 | 2 | 18 |
| 合计 | 20 | 10 | 30 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(Ⅰ)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用智能手机对学习有影响?
(Ⅱ)研究小组将该样本中使用智能手机且成绩优秀的4位同学记为A组,不使用智能手机且成绩优秀的8位同学记为B组,计划从A组推选的2人和B组推选的3人中,随机挑选两人在学校升旗仪式上作“国旗下讲话”分享学习经验.求挑选的两人恰好分别来自A、B两组的概率.