题目内容
4.已知变量x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ 2x-y-1≤0\\ x+y-a≥0\end{array}\right.$,目标函数z=2x+y的最小值为-5,则实数a=-3.分析 作出不等式组对应的平面区域,利用目标函数z=2x+y的最小值为-5,建立条件关系即可求出k的值.
解答
解:目标函数z=2x+y的最小值为-5,
∴y=-2x+z,要使目标函数z=2x+y的最小值为-5,
则平面区域位于直线y=-2x+z的右上方,可以求得2x+y=-5,
作出变量x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ 2x-y-1≤0\\ x+y-a≥0\end{array}\right.$对应的平面区域如图:
则目标函数经过点A,
由$\left\{\begin{array}{l}{2x+y=-5}\\{x-y+1=0}\end{array}\right.$,解得A(-2,-1),同时A也在直线x+y-a=0上,
即-2-1-a=0,
解得a=-3,
故答案为:-3.
点评 本题主要考查线性规划的应用,根据目标函数z=3x+y的最小值为-5,确定平面区域的位置,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
14.定义在R上的偶函数f(x)满足:对任意的实数x都有f(-x)=f(x+2),且f(-1)=2,f(2)=-1.则f(1)+f(2)+f(3)+…+f(2017)的值为( )
| A. | 2017 | B. | 1010 | C. | 1008 | D. | 2 |
12.在△ABC中,AC=$\sqrt{2}$,AB=2,∠BAC=135°,D是BC的中点,M是AD上一点,且$\overrightarrow{AM}$=2$\overrightarrow{MD}$,则$\overrightarrow{MB}$•$\overrightarrow{MC}$的值是( )
| A. | -$\frac{22}{9}$ | B. | -$\frac{2}{9}$ | C. | -$\frac{7}{3}$ | D. | -$\frac{5}{3}$ |
19.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),点A、F分别为其右顶点和右焦点,B1(0,b),B2(0,-b),若B1F⊥B2A,则该双曲线的离心率为( )
| A. | $1+\sqrt{5}$ | B. | $\frac{{\sqrt{5}-1}}{2}$ | C. | $\frac{{\sqrt{5}+1}}{2}$ | D. | $\sqrt{5}-1$ |
9.在平面直角坐标系xOy中,圆O的方程为x2+y2=4,直线l的方程为y=k(x+2),若在圆O上至少存在三点到直线l的距离为1,则实数k的取值范围是( )
| A. | $[{0,\frac{{\sqrt{3}}}{3}}]$ | B. | $[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$ | C. | $[{-\frac{1}{2},\frac{1}{2}}]$ | D. | $[{0,\frac{1}{2}}]$ |
16.定义在R上的函数f(x)=2|x-m|-1为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则( )
| A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |