ÌâÄ¿ÄÚÈÝ
ÒÑ֪˫ÇúÏßx2-y2=1µÄ½¹µãÓëÍÖÔ²
+
=1£¨a£¾b£¾0£©µÄ½¹µãÖØºÏ£¬ÇÒ¸ÃÍÖÔ²µÄ³¤Ö᳤Ϊ4£¬M¡¢NÊÇÍÖÔ²Éϵ͝µã£®
£¨1£©ÇóÍÖÔ²±ê×¼·½³Ì£»
£¨2£©É趯µãPÂú×㣺
=
+2
£¬Ö±ÏßOMÓëONµÄбÂÊÖ®»ýΪ-
£¬ÇóÖ¤£º´æÔÚ¶¨µãF1£¬F2£¬Ê¹µÃ|PF1|+|PF2|Ϊ¶¨Öµ£¬²¢Çó³öF1£¬F2µÄ×ø±ê£»
£¨3£©ÈôMÔÚµÚÒ»ÏóÏÞ£¬ÇÒµãM£¬N¹ØÓÚÔµã¶Ô³Æ£¬µãMÔÚxÖáµÄÉäӰΪA£¬Á¬½ÓNA²¢ÑÓ³¤½»ÍÖÔ²ÓÚµãB£¬ÇóÖ¤£ºÒÔNBΪֱ¾¶µÄÔ²¾¹ýµãM£®
| x2 |
| a2 |
| y2 |
| b2 |
£¨1£©ÇóÍÖÔ²±ê×¼·½³Ì£»
£¨2£©É趯µãPÂú×㣺
| OP |
| OM |
| ON |
| 1 |
| 2 |
£¨3£©ÈôMÔÚµÚÒ»ÏóÏÞ£¬ÇÒµãM£¬N¹ØÓÚÔµã¶Ô³Æ£¬µãMÔÚxÖáµÄÉäӰΪA£¬Á¬½ÓNA²¢ÑÓ³¤½»ÍÖÔ²ÓÚµãB£¬ÇóÖ¤£ºÒÔNBΪֱ¾¶µÄÔ²¾¹ýµãM£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺ÏòÁ¿ÓëÔ²×¶ÇúÏß
·ÖÎö£º£¨1£©ÓÉË«ÇúÏß·½³ÌÇó³öË«ÇúÏߵĽ»µã×ø±ê£¬ÇóµÃÍÖÔ²µÄ°ë½¹¾à£¬½áºÏÒÑÖªÍÖÔ²µÄ³¤Ö᳤ÇóµÃa£¬Ôòb¿ÉÇó£¬ÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©Éè³öPµãMµã¼°NµãµÄ×ø±ê£¬ÓÉÏòÁ¿¹ØÏµµÃµ½P¡¢M¡¢NµÄ×ø±ê¹ØÏµ£¬ÔÙÓÉÖ±ÏßOMÓëONµÄбÂÊÖ®»ýΪ-
¿ÉµÃM¡¢NµÄ×ø±ê¹ØÏµ£¬½áºÏM¡¢NÔÚÍÖÔ²ÉϿɵÃPµãµÄ¹ì¼£ÊÇÍÖÔ²£¬ËµÃ÷|PF1|+|PF2|Ϊ¶¨Öµ£¬²¢Çó³öF1£¬F2µÄ×ø±ê£»
£¨3£©Éè³öMÓëBµÄ×ø±ê£¬µÃµ½A£¬NµÄ×ø±ê£¬ÓÉÌâÉèÖªNAºÍNBµÄбÂÊÏàµÈ£¬Óɴ˵õ½MÓëBµÄ×ø±êµÄ¹ØÏµ£¬È»ºó½áºÏM£¬BÔÚÍÖÔ²ÉÏÖ¤³ökMN•kMB+1=0£¬¼´kMN•kMB=-1£¬´Ó¶øÖ¤µÃÒÔNBΪֱ¾¶µÄÔ²¾¹ýµãM£®
£¨2£©Éè³öPµãMµã¼°NµãµÄ×ø±ê£¬ÓÉÏòÁ¿¹ØÏµµÃµ½P¡¢M¡¢NµÄ×ø±ê¹ØÏµ£¬ÔÙÓÉÖ±ÏßOMÓëONµÄбÂÊÖ®»ýΪ-
| 1 |
| 2 |
£¨3£©Éè³öMÓëBµÄ×ø±ê£¬µÃµ½A£¬NµÄ×ø±ê£¬ÓÉÌâÉèÖªNAºÍNBµÄбÂÊÏàµÈ£¬Óɴ˵õ½MÓëBµÄ×ø±êµÄ¹ØÏµ£¬È»ºó½áºÏM£¬BÔÚÍÖÔ²ÉÏÖ¤³ökMN•kMB+1=0£¬¼´kMN•kMB=-1£¬´Ó¶øÖ¤µÃÒÔNBΪֱ¾¶µÄÔ²¾¹ýµãM£®
½â´ð£º
£¨1£©½â£ºÓÉÌâÉè¿ÉÖª£ºË«ÇúÏßx2-y2=1µÄ½¹µãΪ£¨¡À
£¬0£©£¬
¡àÍÖÔ²ÖеÄc=
£¬
ÓÖÓÉÍÖÔ²µÄ³¤ÖáΪ4µÃ a=2£¬
¹Êb2=a2-c2=2£®
¹ÊÍÖÔ²µÄ±ê×¼·½³ÌΪ£º
+
=1£»
£¨2£©Ö¤Ã÷£ºÉèP£¨xp£¬yp£©£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÓÉ
=
+2
¿ÉµÃ£º
¢Ù
ÓÉÖ±ÏßOMÓëONµÄбÂÊÖ®»ýΪ-
¿ÉµÃ£º
=-
£¬¼´x1x2+2y1y2=0 ¢Ú
Óɢ٢ڿɵãºxP2+2yP2=(x1+2x2)2+2(y1+2y2)2=(x12+2y12)+4(x22+2y22)£®
¡ßM¡¢NÊÇÍÖÔ²Éϵ͝µã£¬¹Êx12+2y12=4£¬x22+2y22=4£®
¹ÊxP2+2yP2=20£¬¼´
+
=1£»
ÓÉÍÖÔ²¶¨Òå¿ÉÖª´æÔÚÁ½¸ö¶¨µãF1(-
£¬0)£¬F2(
£¬0)£¬Ê¹µÃ¶¯µãPµ½Á½¶¨µã¾àÀëºÍΪ¶¨Öµ4
£»
£¨3£©Ö¤Ã÷£ºÉèM£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉÌâÉè¿ÉÖªx1£¾0£¬y1£¾0£¬x2£¾0£¬y2£¾0£¬x1¡Ùx2£¬A£¨x1£¬0£©£¬N£¨-x1£¬-y1£©£¬
ÓÉÌâÉè¿ÉÖªlABбÂÊ´æÔÚÇÒÂú×ãkNA=kNB£¬¡à
=
£®¢Û
kMN•kMB+1=
•
+1£®¢Ü
½«¢Û´úÈë¢Ü¿ÉµÃ£ºkMN•kMB+1=
•
+1=
£®¢Ý
µãM£¬BÔÚÍÖÔ²
+
=1£¬
¹ÊkMN•kMB+1=
=
=0£®
¡àkMN•kMB+1=0£¬kMN•kMB=-1£¬
¡àMN¡ÍMB£®
Òò´ËÒÔNBΪֱ¾¶µÄÔ²¾¹ýµãM£®
| 2 |
¡àÍÖÔ²ÖеÄc=
| 2 |
ÓÖÓÉÍÖÔ²µÄ³¤ÖáΪ4µÃ a=2£¬
¹Êb2=a2-c2=2£®
¹ÊÍÖÔ²µÄ±ê×¼·½³ÌΪ£º
| x2 |
| 4 |
| y2 |
| 2 |
£¨2£©Ö¤Ã÷£ºÉèP£¨xp£¬yp£©£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÓÉ
| OP |
| OM |
| ON |
|
ÓÉÖ±ÏßOMÓëONµÄбÂÊÖ®»ýΪ-
| 1 |
| 2 |
| y1y2 |
| x1x2 |
| 1 |
| 2 |
Óɢ٢ڿɵãºxP2+2yP2=(x1+2x2)2+2(y1+2y2)2=(x12+2y12)+4(x22+2y22)£®
¡ßM¡¢NÊÇÍÖÔ²Éϵ͝µã£¬¹Êx12+2y12=4£¬x22+2y22=4£®
¹ÊxP2+2yP2=20£¬¼´
| xP2 |
| 20 |
| yP2 |
| 10 |
ÓÉÍÖÔ²¶¨Òå¿ÉÖª´æÔÚÁ½¸ö¶¨µãF1(-
| 10 |
| 10 |
| 5 |
£¨3£©Ö¤Ã÷£ºÉèM£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉÌâÉè¿ÉÖªx1£¾0£¬y1£¾0£¬x2£¾0£¬y2£¾0£¬x1¡Ùx2£¬A£¨x1£¬0£©£¬N£¨-x1£¬-y1£©£¬
ÓÉÌâÉè¿ÉÖªlABбÂÊ´æÔÚÇÒÂú×ãkNA=kNB£¬¡à
| y1 |
| 2x1 |
| y2+y1 |
| x2+x1 |
kMN•kMB+1=
| y1 |
| x1 |
| y2-y1 |
| x2-x1 |
½«¢Û´úÈë¢Ü¿ÉµÃ£ºkMN•kMB+1=
| 2(y2+y1) |
| x2+x1 |
| y2-y1 |
| x2-x1 |
| (x22+2y22)-(x12+2y12) |
| x22-x12 |
µãM£¬BÔÚÍÖÔ²
| x2 |
| 4 |
| y2 |
| 2 |
¹ÊkMN•kMB+1=
| (x22+2y22)-(x12+2y12) |
| x22-x12 |
| 4-4 |
| x22-x12 |
¡àkMN•kMB+1=0£¬kMN•kMB=-1£¬
¡àMN¡ÍMB£®
Òò´ËÒÔNBΪֱ¾¶µÄÔ²¾¹ýµãM£®
µãÆÀ£º±¾Ì⿼²éÁËÍÖÔ²·½³ÌµÄÇ󷨣¬ÑµÁ·ÁËÀûÓÃÏòÁ¿¹ØÏµÇóµÃµãµÄ×ø±êÖ®¼äµÄ¹ØÏµ£¬½â´ð´ËÌâµÄ¹Ø¼üÊÇÉè³öËùÓõãµÄ×ø±ê£¬³ä·ÖÀûÓõãÔÚÍÖÔ²ÉÏÕâÒ»ÌØÐÔ£¬Í¨¹ýÕûÌå´ú»»»¯¼ò£¬´ËÀàÎÊÌâµÄ½â¾öÐèҪѧÉú¾ßÓнÏÇ¿µÄ¼ÆËãÄÜÁ¦ºÍÂß¼ÍÆÀíÄÜÁ¦£¬ÊǸ߿¼ÊÔ¾íÖеÄѹÖáÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÏÂÁйØÓÚÁ½Ìõ²»Í¬µÄÖ±Ïßl£¬mÁ½¸ö²»ÖØºÏµÄÆ½Ãæ¦Á£¬¦ÂµÄ˵·¨£¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A¡¢Èôl?¦ÁÇÒ¦Á¡Í¦Â£¬Ôòl¡Í¦Â |
| B¡¢Èôl¡Í¦ÂÇÒm¡Í¦Â£¬Ôòl¡Îm |
| C¡¢Èôl¡Í¦ÂÇÒ¦Á¡Í¦Â£¬Ôòl¡Î¦Á |
| D¡¢Èô¦Á¡É¦Â=mÇÒl¡Ím£¬Ôòl¡Í¦Á |
ÒÑ֪ȫ¼¯U={x¡ÊZ|1¡Üx¡Ü5}£¬A={1£¬2£¬3}£¬∁UB={1£¬2}£¬ÔòA¡ÉB£¨¡¡¡¡£©
| A¡¢{1£¬2} |
| B¡¢{1£¬3} |
| C¡¢{3} |
| D¡¢{1£¬2£¬3} |