题目内容

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,以原点O为圆心,椭圆的短半轴长为半径的圆与直线x-y+
6
=0相切.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线L:y=kx+m与椭圆C相交于A、B两点,且kOA•kOB=-
b2
a2
,求证:△AOB的面积为定值.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线的定义、性质与方程
分析:(Ⅰ)由椭圆的离心率等于
1
2
,原点O到直线x-y+
6
=0
的距离等于b及隐含条件c2=a2-b2联立方程组求解a2,b2的值,则椭圆C的标准方程可求;
(Ⅱ)联立直线方程和椭圆方程,消去y后利用根与系数关系得到A,B两点的横纵坐标的和与积,由弦长公式求得|AB|,由点到直线的距离公式求得O到AB的距离,代入三角形的面积公式证得答案.
解答: (Ⅰ)解:由题意得
c
a
=
1
2
c2=a2-b2
b=
|0-0+
6
|
2
⇒a2=4,b2=3.
∴椭圆的方程为:
x2
4
+
y2
3
=1

(Ⅱ)证明:设A(x1,y1),B(x2,y2),
则A,B的坐标满足
x2
4
+
y2
3
=1
y=kx+m
,消去y化简得:(3+4k2)x2+8kmx+4m2-12=0.
x1+x2=-
8km
3+4k2
x1x2=
4m2-12
3+4k2

由△>0,得4k2-m2+3>0.
y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2
=k2
4m2-12
3+4k2
+km•(-
8km
3+4k2
)+m2
=
3m2-12k2
3+4k2

kOAkOB=-
b2
a2
=-
3
4

y1y2
x1x2
=-
3
4
,即y1y2=-
3
4
x1x2

3m2-12k2
3+4k2
=-
3
4
4m2-12
3+4k2
,即2m2-4k2=3.
|AB|=
(1+k2)[(x1+x2)2-4x1x2]
=
(1+k2)•
48(4k2-m2+3)
(3+4k2)2

=
48(1+k2)
(3+4k2)2
3+4k2
2
=
24(1+k2)
3+4k2

又O点到直线y=kx+m的距离d=
|m|
1+k2

S△AOB=
1
2
d|AB|
=
1
2
|m|
1+k2
24(1+k2)
3+4k2

=
1
2
m2
1+k2
24(1+k2)
3+4k2
=
1
2
3+4k2
2
24
3+4k2
=
3
为定值.
点评:本题考查椭圆方程的求法,考查直线与椭圆的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系解题,这是处理这类问题的最为常用的方法,考查了弦长公式及点到直线的距离公式,是高考试卷中的压轴题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网