ÌâÄ¿ÄÚÈÝ
| x2 |
| a2 |
| y2 |
| b2 |
| 1 |
| 2 |
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈçͼËùʾ£¬¹ýµãF1µÄÖ±ÏßÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£¬I1¡¢I2·Ö±ðΪ¡÷F1BF2¡¢¡÷F1AF2µÄÄÚÐÄ£¬ÑÓ³¤BF2ÓëÍÖÔ²½»ÓÚµãM£¬ÇóËıßÐÎF1I2F2I1µÄÃæ»ýÓë¡÷AF2BµÄÃæ»ýµÄ±ÈÖµ£»
£¨3£©ÔÚxÖáÉÏÊÇ·ñ´æÔÚ¶¨µãP£¬Ê¹µÃ
| PM |
| PB |
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÌâÒâ¿ÉÖª£ºe=
=
£¬Í¨¾¶Îª2
=3£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©ÓÉÓÚI1¡¢I2·Ö±ðΪ¡÷F1BF2¡¢¡÷F1AF2µÄÄÚÐÄ£¬¸ù¾ÝÄÚÐĵÄÐÔÖʺ͵ÈÃæ»ý·¨£¬µÃµã¡÷F1BF2ÄÚÇÐÔ²µÄ°ë¾¶r1=
=
£¬µã¡÷F1AF2ÄÚÇÐÔ²µÄ°ë¾¶r2=
=
£¬ÓÉ´ËÄÜÇó³öËıßÐÎF1I2F2I1µÄÃæ»ýÓë¡÷AF2BµÄÃæ»ýµÄ±ÈÖµ£®
£¨3£©Èô´æÔÚµãP£¬Ê¹µÃ
£¬
Ϊ¶¨Öµ£¬ÉèµãP£¨x0£¬0£©£¬lBMµÄ·½³ÌΪy=k£¨x-1£©£¬ÁªÁ¢
£¬µÃ£¨4k2+3£©x2-8k2x+4k2-12=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí½áºÏÒÑÖªÌõ¼þÄÜÇó³ö
•
Ϊ¶¨Öµ-
£®
| c |
| a |
| 1 |
| 2 |
| b2 |
| a |
£¨2£©ÓÉÓÚI1¡¢I2·Ö±ðΪ¡÷F1BF2¡¢¡÷F1AF2µÄÄÚÐÄ£¬¸ù¾ÝÄÚÐĵÄÐÔÖʺ͵ÈÃæ»ý·¨£¬µÃµã¡÷F1BF2ÄÚÇÐÔ²µÄ°ë¾¶r1=
| S¡÷F1BF2 | ||
|
| S¡÷F1BF2 |
| a+c |
| S¡÷F1AF2 | ||
|
| S¡÷F1AF2 |
| a+c |
£¨3£©Èô´æÔÚµãP£¬Ê¹µÃ
| PM |
| PB |
|
| PM |
| PB |
| 135 |
| 64 |
½â´ð£º
½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£ºe=
=
£¬Í¨¾¶Îª2
=3£¬
½âµÃ£ºa=2£¬b=
¹ÊÍÖÔ²CµÄ·½³ÌΪ£º
+
=1£®£¨3·Ö£©
£¨2£©ÓÉÓÚI1¡¢I2·Ö±ðΪ¡÷F1BF2¡¢¡÷F1AF2µÄÄÚÐÄ£¬
¸ù¾ÝÄÚÐĵÄÐÔÖʺ͵ÈÃæ»ý·¨¿ÉÖª£º
µã¡÷F1BF2ÄÚÇÐÔ²µÄ°ë¾¶r1=
=
£¬
ͬÀí¿ÉµÃ£ºµã¡÷F1AF2ÄÚÇÐÔ²µÄ°ë¾¶£º
r2=
=
£¬£¨5·Ö£©
¡àËıßÐÎF1I2F2I1µÄÃæ»ýÓë¡÷AF2BµÄÃæ»ýµÄ±ÈÖµ£º
=
=
=
=
£®
£¨3£©Èô´æÔÚµãP£¬Ê¹µÃ
£¬
Ϊ¶¨Öµ£¬ÉèµãP£¨x0£¬0£©£¬
ÈôÖ±ÏßBMµÄбÂʲ»´æÔÚ£¬lBMµÄ·½³ÌΪ£ºx=1£¬B£¨1£¬
£©£¬M£¨1£¬-
£©£¬
Ôò
•
=£¨x0-1£©2-
£¬
ÈôÖ±ÏßBMµÄбÂÊ´æÔÚ£¬lBMµÄ·½³ÌΪy=k£¨x-1£©£¬
µãB£¨x1£¬y1£©£¬µãM£¨x2£¬y2£©£¬
ÁªÁ¢
£¬µÃ£¨4k2+3£©x2-8k2x+4k2-12=0£¬
¸ù¾ÝΤ´ï¶¨Àí¿ÉµÃ£ºx1+x2=
£¬x1x2=
£¬
ÓÉÓÚ
=(x2-x0£¬y2)£¬
=(x1-x0£¬y1)
Ôò
•
=x1x2-(x1+x2)x0+
+y1y2=(k2+1)x1x2-(x0+k2)(x1+x2)+k2+
£¬
ÕûÀí¿ÉµÃ£º
=¦Ë£¨¦ËΪ³£Êý£©£¬£¨10·Ö£©
Ôò(4
-8x0-5-4¦Ë)k2+3
-12-3¦Ë=0¶Ô?k¡ÊRºã³ÉÁ¢£¬
¹Ê
£¬½âµÃ
£¬£¨12·Ö£©
¾ÑéÖ¤Ö±ÏßBMµÄбÂʲ»´æÔÚʱ£¬
•
=£¨x0-1£©2-
=-
£¬
¡à´æÔÚµãP£¨
£¬0£©£¬Ê¹µÃ
•
=£¨x0-1 £©2-
=-
£¬
¡à´æÔÚµãP£¨
£¬0£©£¬Ê¹µÃ
•
Ϊ¶¨Öµ-
£®£¨13·Ö£©
| c |
| a |
| 1 |
| 2 |
| b2 |
| a |
½âµÃ£ºa=2£¬b=
| 3 |
¹ÊÍÖÔ²CµÄ·½³ÌΪ£º
| x2 |
| 4 |
| y2 |
| 3 |
£¨2£©ÓÉÓÚI1¡¢I2·Ö±ðΪ¡÷F1BF2¡¢¡÷F1AF2µÄÄÚÐÄ£¬
¸ù¾ÝÄÚÐĵÄÐÔÖʺ͵ÈÃæ»ý·¨¿ÉÖª£º
µã¡÷F1BF2ÄÚÇÐÔ²µÄ°ë¾¶r1=
| S¡÷F1BF2 | ||
|
| S¡÷F1BF2 |
| a+c |
ͬÀí¿ÉµÃ£ºµã¡÷F1AF2ÄÚÇÐÔ²µÄ°ë¾¶£º
r2=
| S¡÷F1AF2 | ||
|
| S¡÷F1AF2 |
| a+c |
¡àËıßÐÎF1I2F2I1µÄÃæ»ýÓë¡÷AF2BµÄÃæ»ýµÄ±ÈÖµ£º
| SF1I2F1I1 |
| S¡÷AF1B |
| SF1I1F2+SF1I2F2 |
| S¡÷F1BE+S¡÷F1AF2 |
=
| ||
| S¡÷F1BF1+S¡÷F1AF2 |
| c |
| a+c |
| 1 |
| 3 |
£¨3£©Èô´æÔÚµãP£¬Ê¹µÃ
| PM |
| PB |
ÈôÖ±ÏßBMµÄбÂʲ»´æÔÚ£¬lBMµÄ·½³ÌΪ£ºx=1£¬B£¨1£¬
| 3 |
| 2 |
| 3 |
| 2 |
Ôò
| PM |
| PB |
| 9 |
| 4 |
ÈôÖ±ÏßBMµÄбÂÊ´æÔÚ£¬lBMµÄ·½³ÌΪy=k£¨x-1£©£¬
µãB£¨x1£¬y1£©£¬µãM£¨x2£¬y2£©£¬
ÁªÁ¢
|
¸ù¾ÝΤ´ï¶¨Àí¿ÉµÃ£ºx1+x2=
| 8k2 |
| 4k2+3 |
| 4k2-12 |
| 4k2+3 |
ÓÉÓÚ
| PM |
| PB |
Ôò
| PM |
| PB |
| x | 2 0 |
| x | 2 0 |
ÕûÀí¿ÉµÃ£º
(4
| ||||
| 4k2+3 |
Ôò(4
| x | 2 0 |
| x | 2 0 |
¹Ê
|
|
¾ÑéÖ¤Ö±ÏßBMµÄбÂʲ»´æÔÚʱ£¬
| PM |
| PB |
| 9 |
| 4 |
| 135 |
| 64 |
¡à´æÔÚµãP£¨
| 11 |
| 8 |
| PM |
| PB |
| 9 |
| 4 |
| 135 |
| 64 |
¡à´æÔÚµãP£¨
| 11 |
| 8 |
| PM |
| PB |
| 135 |
| 64 |
µãÆÀ£º±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éËıßÐÎÓëÈý½ÇÐÎÃæ»ý±ÈÖµµÄÇ󷨣¬¿¼²éÏòÁ¿µÄÊýÁ¿»ýΪ¶¨ÖµµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿