ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf(x)=mx3+nx2(m¡¢n¡ÊR ,m¡Ù0)µÄͼÏñÔÚ£¨2£¬f(2)£©´¦µÄÇÐÏßÓëxÖáÆ½ÐÐ.
£¨1£©Çón£¬mµÄ¹ØÏµÊ½²¢Çóf(x)µÄµ¥µ÷¼õÇø¼ä£»
£¨2£©Ö¤Ã÷£º¶ÔÈÎÒâʵÊý0<x1<x2<1, ¹ØÓÚxµÄ·½³Ì£º
ÔÚ£¨x1,x2£©ºãÓÐʵÊý½â
£¨3£©½áºÏ£¨2£©µÄ½áÂÛ£¬ÆäʵÎÒÃÇÓÐÀ¸ñÀÊÈÕÖÐÖµ¶¨Àí£ºÈôº¯Êýf(x)ÊÇÔÚ±ÕÇø¼ä[a,b]ÉÏÁ¬Ðø²»¶ÏµÄº¯Êý£¬ÇÒÔÚÇø¼ä(a,b)ÄÚµ¼Êý¶¼´æÔÚ£¬ÔòÔÚ(a,b)ÄÚÖÁÉÙ´æÔÚÒ»µãx0£¬Ê¹µÃ
.ÈçÎÒÃÇËùѧ¹ýµÄÖ¸¡¢¶ÔÊýº¯Êý£¬Õý¡¢ÓàÏÒº¯ÊýµÈ¶¼·ûºÏÀ¸ñÀÊÈÕÖÐÖµ¶¨ÀíÌõ¼þ.ÊÔÓÃÀ¸ñÀÊÈÕÖÐÖµ¶¨ÀíÖ¤Ã÷£º
µ±0<a<bʱ£¬
£¨¿É²»ÓÃÖ¤Ã÷º¯ÊýµÄÁ¬ÐøÐԺͿɵ¼ÐÔ£©
½â£º(1)ÒòΪf¡¯(x)=3mx2+2nx,
ÓÉÒÑÖªÓÐf¡¯(2)=0,ËùÒÔ3m+n=0¼´n=-3m
¼´f¡¯(x)=3mx2-6mx,ÓÉf¡¯(x)>0Öªmx(x-2)>0.
µ±m>0ʱµÃx<0»òx>2£¬f(x)µÄ¼õÇø¼äΪ£¨0£¬2£©£»
µ±m<0ʱµÃ£º0<x<2,f(x)µÄ¼õÇø¼äΪ£¨-¡Þ£¬0£©ºÍ£¨2£¬+¡Þ£©£»
×ÛÉÏËùÊö£ºµ±m>0ʱ£¬f(x)µÄ¼õÇø¼äΪ£¨0£¬2£©£»
µ±m<0ʱ,f(x)µÄ¼õÇø¼äΪ£¨-¡Þ£¬0£©ºÍ£¨2£¬+¡Þ£©£»
¿É»¯Îª3x2-6x-x12-x22-x1x2+3x1+3x2=0,Áîh(x)= 3x2-6x-x12-x22-x1x2+3x1+3x2-
Ôòh(x1)=(x1-x2)(2x1+x2-3),h(x2)=(x2-x1)(x1+2x2-3),
¼´h(x1)h(x2)=-(x1-x2)2(2x1+x2-3)(x1+2x2-3) ÓÖÒòΪ0<x1<x2<1,ËùÒÔ(2x1+x2-3)<0,(x1+2x2-3)<0, ¼´h(x1)h(x2)<0, -
¹Êh(x)=0ÔÚÇø¼ä(x1,x2)ÄÚ±ØÓн⣬
¼´¹ØÓÚxµÄ·½³Ì
ÔÚ£¨x1,x2£©ºãÓÐʵÊý½â-
£¨3£©Áîg(x)=lnx,x¡Ê(a,b)£¬ -----------10·Ö
Ôòg(x)·ûºÏÀ¸ñÀÊÈÕÖÐÖµ¶¨ÀíµÄÌõ¼þ,¼´´æÔÚx0¡Ê£¨a,b£©,ʹ
ÒòΪg¡¯(x)=
,ÓÉx¡Ê(a,b),0<a<b¿ÉÖªg¡¯(x)¡Ê(
),b-a>0
¼´