题目内容
设p:x2-8x-20≤0,q:(x+m-1)(x-m-1)≤0(m>0),且p是q的充分不必要条件,求实数m的取值范围.
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:求出不等式的等价条件,利用充分不必要的定义建立条件关系即可得到结论.
解答:
解:由x2-8x-20≤0,得-2≤x≤10,即p:-2≤x≤10,
由[x-(1-m)][x-(1+m)]≤0,
即q:1-m≤x≤1+m,(m>0),
∵p是q的充分不必要条件,
∴
,
即
,
∴m≥9,
故实数m的取值范围是m≥9.
由[x-(1-m)][x-(1+m)]≤0,
即q:1-m≤x≤1+m,(m>0),
∵p是q的充分不必要条件,
∴
|
即
|
∴m≥9,
故实数m的取值范围是m≥9.
点评:本题主要考查充分条件和必要条件的应用,利用不等式的解法求出不等式的等价条件是解决本题的关键.
练习册系列答案
相关题目
对于任意两个复数z1=a+bi,z2=c+di(a,b,c,d∈R),定义运算“?”为:z1?z2=ac+bd.则下列结论错误的是( )
| A、(-i)?(-i)=1 |
| B、i?(i?i)=1 |
| C、i?(1+2i)=2 |
| D、(1-i)?(1+i)=0 |
设a,b∈R,则“a
+b
=1”是“a2+b2=1”的( )
| 1-b2 |
| 1-a2 |
| A、充分而不必要条件 |
| B、必要而不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |