题目内容

5.设F1,F2是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),的左右焦点,离心率为$\frac{\sqrt{2}}{2}$,M为椭圆上的动点,|MF1|的最大值为1$+\sqrt{2}$.
(Ⅰ)求椭圆C的方程.
(Ⅱ)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P,求证:|PF1|+|PF2|是定值.

分析 (Ⅰ)由题意列关于a,c的方程组,求解方程组可得a,c的值,再由隐含条件求得b,则椭圆方程可求;
(Ⅱ)设AF1、BF2的方程分别为my=x+1,my=x-1,分别联立直线方程与椭圆方程求出AF1、BF2,再由平面几何知识可得|PF1|+|PF2|与AF1、BF2的关系,代入AF1、BF2的值得答案.

解答 (Ⅰ)解:根据题意有:$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{a+c=1+\sqrt{2}}\end{array}\right.$,
解得:a=$\sqrt{2},c=1$,∴b2=1,
故椭圆C的方程是$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(Ⅱ)证明:由(Ⅰ)得F1(-1,0),F2(1,0),
又∵AF1∥BF2
∴设AF1、BF2的方程分别为my=x+1,my=x-1,A(x1,y1),B(x2,y2),y1>0,y2>0.
∴$\left\{\begin{array}{l}{\frac{{{x}_{1}}^{2}}{2}+{{y}_{1}}^{2}=1}\\{m{y}_{1}={x}_{1}+1}\end{array}\right.$,得$({m}^{2}+2){{y}_{1}}^{2}-2m{y}_{1}-1=0$,
∴${y}_{1}=\frac{m+\sqrt{2{m}^{2}+2}}{{m}^{2}+2}$.
∴$A{F}_{1}=\sqrt{({x}_{1}+1)^{2}+{{y}_{1}}^{2}}$=$\sqrt{(m{y}_{1})^{2}+{{y}_{1}}^{2}}=\sqrt{{m}^{2}+1}•\frac{m+\sqrt{2{m}^{2}+2}}{{m}^{2}+2}$=$\frac{\sqrt{2}({m}^{2}+1)+m\sqrt{{m}^{2}+1}}{{m}^{2}+2}$.①
同理,$B{F}_{2}=\frac{\sqrt{2}({m}^{2}+1)-m\sqrt{{m}^{2}+1}}{{m}^{2}+2}$.②
∵AF1∥BF2,∴$\frac{PB}{P{F}_{1}}=\frac{B{F}_{2}}{A{F}_{1}}$,
即$\frac{PB}{P{F}_{1}}+1=\frac{B{F}_{2}}{A{F}_{1}}+1$,可得$\frac{PB+P{F}_{1}}{P{F}_{1}}=\frac{B{F}_{2}+A{F}_{1}}{A{F}_{1}}$.
∴$P{F}_{1}=\frac{A{F}_{1}}{A{F}_{1}+B{F}_{2}}•B{F}_{1}$.
由点B在椭圆上知,$B{F}_{1}+B{F}_{2}=2\sqrt{2}$,∴$P{F}_{1}=\frac{A{F}_{1}}{A{F}_{1}+B{F}_{2}}(2\sqrt{2}-B{F}_{2})$.
同理.$P{F}_{2}=\frac{B{F}_{2}}{A{F}_{1}+B{F}_{2}}(2\sqrt{2}-A{F}_{1})$.
则$P{F}_{1}+P{F}_{2}=\frac{A{F}_{1}}{A{F}_{1}+B{F}_{2}}(2\sqrt{2}-B{F}_{2})$$+\frac{B{F}_{2}}{A{F}_{1}+B{F}_{2}}(2\sqrt{2}-A{F}_{1})$=$2\sqrt{2}-$$\frac{2A{F}_{1}•B{F}_{2}}{A{F}_{1}+B{F}_{2}}$.
由①②得,$A{F}_{1}+B{F}_{2}=\frac{2\sqrt{2}({m}^{2}+1)}{{m}^{2}+2}$,$A{F}_{1}•B{F}_{2}=\frac{{m}^{2}+1}{{m}^{2}+2}$,
∴$P{F}_{1}+P{F}_{2}=2\sqrt{2}-\frac{\sqrt{2}}{2}=\frac{3\sqrt{2}}{2}$.
∴|PF1|+|PF2|是定值.

点评 本题考查椭圆的标准方程的求法,考查了椭圆的简单性质,训练了直线与圆锥曲线位置关系的应用,考查计算能力,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网