题目内容

12.已知等差数列{an}的公差d≠0,其前n项和为Sn,若S9=99,且a4,a7,a12成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${T_n}=\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$,证明:${T_n}<\frac{3}{4}$.

分析 (Ⅰ)由S9=99,求出a5=11,由a4,a7,a12成等比数列,求出d=2,由此能求出数列{an}的通项公式.
(Ⅱ)求出${S}_{n}=\frac{n({a}_{1}+{a}_{n})}{2}$=n(n+2),从而$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,由此利用裂项求和法能证明${T_n}<\frac{3}{4}$.

解答 解:(Ⅰ)因为等差数列{an}的公差d≠0,其前n项和为Sn,S9=99,
∴a5=11,…(2分)
由a4,a7,a12成等比数列,得${{a}_{7}}^{2}={a}_{4}{a}_{12}$,
即(11+2d)2=(11-d)(11+7d),∵d≠0,∴d=2,…(4分)
∴a1=11-4×2=3,
故an=2n+1 …(6分)
证明:(Ⅱ)${S}_{n}=\frac{n({a}_{1}+{a}_{n})}{2}$=n(n+2),$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,…(8分)
∴${T_n}=\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$
=$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{2}-\frac{1}{3}$)+($\frac{1}{3}-\frac{1}{4}$)+…+($\frac{1}{n-1}-\frac{1}{n+1}$)+($\frac{1}{n}-\frac{1}{n+2}$)]…(10分)
=$\frac{1}{2}$[1+$\frac{1}{2}-(\frac{1}{n+1}+\frac{1}{n+2})$]=$\frac{3}{4}-\frac{1}{2}(\frac{1}{n+1}+\frac{1}{n+2})$$<\frac{3}{4}$,
故${T_n}<\frac{3}{4}$. …(12分)

点评 本题考查数列的通项公式的求法,考查数列的前n项和小于$\frac{3}{4}$的证明,是中档题,解题时要认真审题,注意裂项求和法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网