ÌâÄ¿ÄÚÈÝ
20£®ÒÑÖª$\overrightarrow{e_1}£¬\overrightarrow{e_2}$ÊǼнÇΪ60¡ãµÄÁ½¸öµ¥Î»ÏòÁ¿£¬Ôò¡°ÊµÊýk=4¡±ÊÇ¡°$£¨2\overrightarrow{e_1}-k\overrightarrow{e_2}£©¡Í\overrightarrow{e_1}$¡±µÄ£¨¡¡¡¡£©| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ³äÒªÌõ¼þ | ||
| C£® | ±ØÒª²»³ä·ÖÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
·ÖÎö Éè³öÏòÁ¿µÄ×ø±ê£¬Çó³ö$£¨2\overrightarrow{e_1}-k\overrightarrow{e_2}£©¡Í\overrightarrow{e_1}$¡±µÄ³äÒªÌõ¼þ£¬Åжϼ´¿É£®
½â´ð ½â£ºÉè$\overrightarrow{{e}_{1}}$=£¨1£¬0£©£¬Ôò$\overrightarrow{{e}_{2}}$=£¨$\frac{1}{2}$£¬$\frac{\sqrt{3}}{2}$£©£¬
Èô$£¨2\overrightarrow{e_1}-k\overrightarrow{e_2}£©¡Í\overrightarrow{e_1}$¡±£¬
Ôò£¨2$\overrightarrow{{e}_{1}}$-k$\overrightarrow{{k}_{2}}$£©•$\overrightarrow{{e}_{1}}$=0£¬
¹Ê[2£¨1£¬0£©-k£¨$\frac{1}{2}$£¬$\frac{\sqrt{3}}{2}$£©]•£¨1£¬0£©=2-$\frac{k}{2}$=0£¬
½âµÃ£ºk=4£¬
¹ÊʵÊýk=4¡±ÊÇ¡°$£¨2\overrightarrow{e_1}-k\overrightarrow{e_2}£©¡Í\overrightarrow{e_1}$¡±µÄ³äÒªÌõ¼þ£¬
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÁ˳ä·Ö±ØÒªÌõ¼þ£¬¿¼²éÏòÁ¿µÄÔËË㣬ÊÇÒ»µÀÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
5£®É躯Êýf£¨x£©ÊǶþ´Îº¯Êý£¬Èôf£¨x£©exµÄÒ»¸ö¼«ÖµµãΪx=-1£¬ÔòÏÂÁÐͼÏ󲻿ÉÄÜΪf£¨x£©Í¼ÏóµÄÊÇ£¨¡¡¡¡£©
| A£® | B£® | ||||
| C£® | D£® |
10£®Èç±íÊÇijλÎÄ¿ÆÉúÁ¬Ðø5´ÎÔ¿¼µÄÀúÊ·¡¢ÕþÖεijɼ¨£¬½á¹ûÈçÏ£º
£¨¢ñ£©Çó¸ÃÉú5´ÎÔ¿¼ÀúÊ·³É¼¨µÄƽ¾ù·ÖºÍÕþÖγɼ¨µÄ·½²î£»
£¨¢ò£©Ò»°ãÀ´Ëµ£¬Ñ§ÉúµÄÀúÊ·³É¼¨ÓëÕþÖγɼ¨ÓнÏÇ¿µÄÏßÐÔÏà¹Ø¹ØÏµ£¬¸ù¾ÝÉϱíÌṩµÄÊý¾Ý£¬ÇóÁ½¸ö±äÁ¿x£¬yµÄÏßÐԻع鷽³Ì£®
²Î¿¼¹«Ê½£º$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{x}2}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$£¬$\overline{x}$£¬$\overline{y}$±íʾÑù±¾¾ùÖµ£®
| ÔÂ·Ý | 9 | 10 | 11 | 12 | 1 |
| ÀúÊ·£¨x ·Ö£© | 79 | 81 | 83 | 85 | 87 |
| ÕþÖΣ¨y ·Ö£© | 77 | 79 | 79 | 82 | 83 |
£¨¢ò£©Ò»°ãÀ´Ëµ£¬Ñ§ÉúµÄÀúÊ·³É¼¨ÓëÕþÖγɼ¨ÓнÏÇ¿µÄÏßÐÔÏà¹Ø¹ØÏµ£¬¸ù¾ÝÉϱíÌṩµÄÊý¾Ý£¬ÇóÁ½¸ö±äÁ¿x£¬yµÄÏßÐԻع鷽³Ì£®
²Î¿¼¹«Ê½£º$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{x}2}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$£¬$\overline{x}$£¬$\overline{y}$±íʾÑù±¾¾ùÖµ£®