题目内容
11.| A. | $\frac{61}{100}$ | B. | $\frac{39}{100}$ | C. | $\frac{10}{100}$ | D. | $\frac{117}{100}$ |
分析 利用阴影部分与矩形的面积比等于落入阴影部分的豆子数与所有豆子数的比,由此求出阴影部分的面积
解答 解:由题意设阴影部分的面积为S,则$\frac{S}{3}$=$\frac{39}{100}$,所以S=$\frac{117}{100}$;
故选:D.
点评 本题考查了几何概型的应用;关键是明确落入阴影部分的豆子数与所有豆子的比等于阴影部分与矩形的面积比.
练习册系列答案
相关题目
14.如果[x]表示不超过x的最大整数.若
S=[lg1]+[lg2]+[1g3]+…+[1g2016]+[1g1]+[1g$\frac{1}{2}$]+[lg$\frac{1}{3}$]+…+[lg$\frac{1}{2016}$],则S为( )
S=[lg1]+[lg2]+[1g3]+…+[1g2016]+[1g1]+[1g$\frac{1}{2}$]+[lg$\frac{1}{3}$]+…+[lg$\frac{1}{2016}$],则S为( )
| A. | 0 | B. | -2012 | C. | -2013 | D. | -2014 |
19.已知集合A={y|y=2x-1,x∈R},B={x|x≥2},则( )
| A. | -1∈A | B. | $\sqrt{5}$∉B | C. | A∪B=B | D. | A∩B=B |
1.直角梯形ABCD满足AB∥CD,AD=CD=$\frac{1}{2}$AB=1,AD⊥AB,点M是梯形边上的任意一点.则AM≥$\sqrt{2}$的概率是( )
| A. | $\frac{4+\sqrt{2}}{7}$ | B. | $\frac{4-\sqrt{2}}{7}$ | C. | $\frac{4+\sqrt{2}}{8}$ | D. | $\frac{4-\sqrt{2}}{8}$ |