题目内容

1.已知四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且BE⊥PD.
(Ⅰ)求异面直线PA与CD所成的角的大小;
(Ⅱ)求证:BE⊥平面PCD;
(Ⅲ)求二面角A-PD-B的大小.

分析 (Ⅰ)由于直线PA与CD不在同一平面内,要把两条异面直线移到同一平面内,做AF∥CD,异面直线PA与CD所成的角与AF与PA所成的角相等.
(Ⅱ)证明CD⊥平面PDB,可得CD⊥BE,结合BE⊥PD即可得证.
(Ⅲ)连接AF,交BD于点O,则AO⊥BD.过点O作OH⊥PD于点H,连接AH,则AH⊥PD,则∠AHO为二面角A-PD-B的平面角.

解答 (Ⅰ)解:取BC中点F,连接AF,则CF=AD,且CF∥AD,
∴四边形ADCF是平行四边形,
∴AF∥CD,
∴∠PAF(或其补角)为异面直线PA与CD所成的角
∵PB⊥平面ABCD,∴PB⊥BA,PB⊥BF.
∵PB=AB=BF=1,
∴AB⊥BC,
∴PA=PF=AF=$\sqrt{2}$.
∴△PAF是正三角形,∠PAF=60°
即异面直线PA与CD所成的角等于60°.
(Ⅱ)证明:由(Ⅰ)知,CF=BF=DF,∴∠CDB=90°.
∴CD⊥BD
又PB⊥平面PBD,∴PB⊥CD、
∵PB∩BD=B,
∴CD⊥平面PBD,
∴CD⊥BE
∵CD∩PD=D,BE⊥PD
∴BE⊥平面PCD;
(Ⅲ)解:连接AF,交BD于点O,则AO⊥BD、
∵PB⊥平面ABCD,
∴平面PBD⊥平面ABD,
∴AO⊥平面PBD、
过点O作OH⊥PD于点H,连接AH,则AH⊥PD、
∴∠AHO为二面角A-PD-B的平面角.
在Rt△ABD中,AO=$\frac{\sqrt{2}}{2}$.
在Rt△PAD中,AH=$\frac{PA•AD}{PD}$=$\frac{\sqrt{6}}{3}$.
在Rt△AOH中,sin∠AHO=$\frac{AO}{AH}$=$\frac{\sqrt{3}}{2}$.
∴∠AHO=60°.
即二面角A-PD-B的大小为60°.

点评 此题主要考查异面直线的角度、二面角的平面角的计算,考查线面垂直,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网