ÌâÄ¿ÄÚÈÝ
16£®ÍÖÔ²CµÄÖÐÐÄÔÚԵ㣬½¹µãF1£¬F2ÔÚxÖáÉÏ£¬ÍÖÔ²Éϵĵ㵽×ó½¹µãF1µÄ¾àÀëµÄ×î´óֵΪ8£¬¹ýF1µÄÖ±Ïß½»ÍÖÔ²CÓÚA£¬BÁ½µã£¬ÇÒ¡÷ABF2µÄÖܳ¤Îª20£¬ÔòÍÖÔ²CµÄ·½³ÌΪ£¨¡¡¡¡£©| A£® | $\frac{y^2}{25}+\frac{x^2}{16}=1$ | B£® | $\frac{x^2}{25}+\frac{y^2}{16}=1$ | C£® | $\frac{x^2}{25}+\frac{y^2}{9}=1$ | D£® | $\frac{x^2}{16}+\frac{y^2}{9}=1$ |
·ÖÎö ÒÀÌâÒâÉèÍÖÔ²·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1\\;£¨a£¾b£¾0£©$£¨a£¾b£¾0£¬ÓÉa+c=8£¬¡÷ABF2µÄÖܳ¤Îª4a=20£®ÇóµÃa¡¢b£¬¼´¿ÉµÃµ½ËùÇóÍÖÔ²·½³Ì£®
½â´ð ½â£ºÒÀÌâÒâÉèÍÖÔ²·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1\\;£¨a£¾b£¾0£©$£¨a£¾b£¾0£©£¬
¡ßÍÖÔ²Éϵĵ㵽×ó½¹µãF1µÄ¾àÀëµÄ×î´óֵΪ8£¬¡àa+c=8£¬
¡ß¡÷ABF2µÄÖܳ¤Îª20£¬¡à4a=20£¬¡àa=5£¬c=3£¬b=4£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$£¬¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ·½³Ì¼°ÐÔÖÊ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®Öܳ¤Îª9£¬Ô²ÐĽÇΪ1radµÄÉÈÐÎÃæ»ýΪ£¨¡¡¡¡£©
| A£® | $\frac{9}{2}$ | B£® | $\frac{9}{4}$ | C£® | ¦Ð | D£® | 2 |
4£®ÏÂÁÐËĸöÃüÌâÖУº
¢Ù¡°µÈ±ßÈý½ÇÐεÄÈý¸öÄڽǾùΪ60¡ã¡±µÄÄæÃüÌ⣻
¢Ú¡°Èôk£¾0£¬Ôò·½³Ìx2+2x-k=0ÓÐʵ¸ù¡±µÄÄæ·ñÃüÌ⣻
¢Û¡°È«µÈÈý½ÇÐεÄÃæ»ýÏàµÈ¡±µÄ·ñÃüÌ⣻
¢Ü¡°Èôab¡Ù0£¬Ôòa¡Ù0¡±µÄ·ñÃüÌ⣮
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ£¨¡¡¡¡£©
¢Ù¡°µÈ±ßÈý½ÇÐεÄÈý¸öÄڽǾùΪ60¡ã¡±µÄÄæÃüÌ⣻
¢Ú¡°Èôk£¾0£¬Ôò·½³Ìx2+2x-k=0ÓÐʵ¸ù¡±µÄÄæ·ñÃüÌ⣻
¢Û¡°È«µÈÈý½ÇÐεÄÃæ»ýÏàµÈ¡±µÄ·ñÃüÌ⣻
¢Ü¡°Èôab¡Ù0£¬Ôòa¡Ù0¡±µÄ·ñÃüÌ⣮
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ£¨¡¡¡¡£©
| A£® | ¢Ú¡¢¢Û | B£® | ¢Û¡¢¢Ü | C£® | ¢Ù¡¢¢Ü | D£® | ¢Ù¡¢¢Ú |
11£®É躯Êý $f£¨x£©=\frac{2}{x}+lnx$£¬Ôò£¨¡¡¡¡£©
| A£® | $x=\frac{1}{2}$ Ϊ f£¨x£©µÄ¼«´óÖµµã | B£® | $x=\frac{1}{2}$Ϊf£¨x£©µÄ¼«Ð¡Öµµã | ||
| C£® | x=2 Ϊ f£¨x£©µÄ¼«´óÖµµã | D£® | x=2Ϊf£¨x£©µÄ¼«Ð¡Öµµã |
19£®µÈ²îÊýÁÐ{an}ÖУ¬a4=4£¬a3+a8=5£¬Ôòa7=£¨¡¡¡¡£©
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |