ÌâÄ¿ÄÚÈÝ
2£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ×óÓÒ½¹µãΪF1£¬F2£¬ÆäÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬ÓÖÅ×ÎïÏßx2=4yÔÚµãP£¨2£¬1£©´¦µÄÇÐÏßÇ¡ºÃ¹ýÍÖÔ²CµÄÒ»¸ö½¹µã£®£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýµãM£¨-4£¬0£©Ð±ÂÊΪk£¨k¡Ù0£©µÄÖ±Ïßl½»ÍÖÔ²CÓÚA£¬BÁ½µã£¬Ö±ÏßAF1£¬BF1µÄбÂÊ·Ö±ðΪk1£¬k2£¬ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃk1k+k2k=¦Ëk1k2£¿Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÍƵ¼³öÅ×ÎïÏß¹ýxÖáÉÏ£¨1£¬0£©µã£¬´Ó¶øc=1£¬ÔÙÓÉÀëÐÄÂÊÄÜÇó³ö$a=\sqrt{2}£¬b=1$£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©ÉèlµÄ·½³ÌΪy=k£¨x+4£©£¬ÁªÁ¢$\left\{{\begin{array}{l}{y=k£¨x+4£©}\\{{x^2}+2{y^2}=2}\end{array}}\right.⇒£¨1+2{k^2}£©{x^2}+16{k^2}x+32{k^2}-2=0$£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³ö³£Êý$¦Ë=\frac{2}{7}$£®
½â´ð £¨1£©¡ßÅ×ÎïÏßx2=4yÔÚµãP£¨2£¬1£©´¦µÄÇÐÏß·½³ÌΪy=x-1£¬
¡àËü¹ýxÖáÉÏ£¨1£¬0£©µã£¬
¡àÍÖÔ²CµÄÒ»¸ö½¹µãΪ£¨1£¬0£©¼´c=1
ÓÖ¡ß$e=\frac{c}{a}=\frac{{\sqrt{2}}}{2}$£¬
¡à$a=\sqrt{2}£¬b=1$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬lµÄ·½³ÌΪy=k£¨x+4£©£¬
ÁªÁ¢$\left\{{\begin{array}{l}{y=k£¨x+4£©}\\{{x^2}+2{y^2}=2}\end{array}}\right.⇒£¨1+2{k^2}£©{x^2}+16{k^2}x+32{k^2}-2=0$£¬
¡à$\left\{{\begin{array}{l}{¡÷£¾0}\\{{x_1}+{x_2}=-\frac{{16{k^2}}}{{1+2{k^2}}}}\\{{x_1}{x_2}=\frac{{32{k^2}-2}}{{1+2{k^2}}}}\end{array}}\right.$£¬¡ß${F_1}£¨-1£¬0£©£¬{k_1}=\frac{y_1}{{{x_1}+1}}£¬{k_2}=\frac{y_2}{{{x_2}+1}}$£¬
¡à$\frac{1}{k_1}+\frac{1}{k_2}=\frac{{{x_1}+1}}{y_1}+\frac{{{x_2}+1}}{y_2}=\frac{1}{k}£¨\frac{{{x_1}+1}}{{{x_1}+4}}+\frac{{{x_2}+1}}{{{x_2}+4}}£©$£¬
¡à$\frac{k}{{k_1^{\;}}}+\frac{k}{k_2}=\frac{{2{x_1}{x_2}+5£¨{x_1}+{x_2}£©+8}}{{{x_1}{x_2}+4£¨{x_1}+{x_2}£©+16}}=\frac{2}{7}$£¬
¡à${k_1}k+{k_2}k=\frac{2}{7}{k_1}{k_2}$£¬
¡à´æÔÚ³£Êý$¦Ë=\frac{2}{7}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄʵÊýÖµµÄÇ󷨣¬¿¼²éÍÖÔ²¡¢Î¤´ï¶¨Àí¡¢¸ùµÄÅбðʽ¡¢Ö±Ïß·½³Ì¡¢ÏÒ³¤¹«Ê½µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| A£® | x=$\frac{¦Ð}{12}$ | B£® | x=$\frac{¦Ð}{4}$ | C£® | x=$\frac{5¦Ð}{6}$ | D£® | x=$\frac{5¦Ð}{12}$ |
| ϲ»¶´òÀºÇò | ²»Ï²»¶´òÀºÇò | ºÏ¼Æ | |
| ÄÐÉú | 5 | ||
| Å®Éú | 10 | ||
| ºÏ¼Æ |
£¨¢ñ£©Ç뽫ÉÏÊöÁÐÁª±í²¹³äÍêÕû£»
£¨¢ò£©ÅжÏÊÇ·ñÓÐ99.5%µÄ°ÑÎÕÈÏΪϲ»¶´òÀºÇòÓëÐÔ±ðÓйأ¿
¸½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
| p£¨K2¡Ýk0£© | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |