题目内容

5.设函数f(x)=|x2-2x-1|,若m>n>1,且f(m)=f(n),则mn的取值范围为(  )
A.$({3,3+2\sqrt{2}})$B.$({3,3+2\sqrt{2}}]$C.(1,3)D.(1,3]

分析 作出f(x)的图象,判断m,n的范围,根据f(m)=f(n)和基本不等式得出答案

解答 解:解方程x2-2x-1=0得x=1±$\sqrt{2}$,
∴当1-$\sqrt{2}$<x<1+$\sqrt{2}$时,x2-2x-1<0,
当x<1-$\sqrt{2}$或x>1+$\sqrt{2}$时,x2-2x-1>0,
作出f(x)的函数图象如图所示:

∵m>n>1,且f(m)=f(n),
∴1<n<1$+\sqrt{2}$,1+$\sqrt{2}$<m<3.
f(n)=-n2+2n+1,f(m)=m2-2m-1,
∵f(m)=f(n),
∴m2-2m-1+n2-2n-1=0,即(m+n-1)2=2mn+3,
∵m+n>2$\sqrt{mn}$>1,
∴(m+n-1)2>(2$\sqrt{mn}$-1)2=4mn-4$\sqrt{mn}$+1,
∴2mn+3>4mn-4$\sqrt{mn}$+1,解得0<$\sqrt{mn}$<1+$\sqrt{2}$,
∴mn<3+2$\sqrt{2}$,
故选:A.

点评 题考查了二次函数的性质,基本不等式的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网