题目内容
16.已知抛物线C:y2=8x的焦点为F,过F的直线l与抛物线C交于M(x1,y1),N(x2,y2)两点,若|MN|=8,则( )| A. | x1+x2=8 | B. | x1+x2=4 | C. | y1+y2=8 | D. | y1+y2=4 |
分析 根据抛物线方程可求得准线方程,进而根据抛物线的定义可知|MN|=x1+x2+p,求解即可.
解答 解:依题意可知p=4,
准线方程为x=-2,
根据抛物线的定义,
可知|MN|=x1+2+x2+2=8.
可得x1+x2=4.
故选:B.
点评 本题主要考查抛物线的应用.属基础题.
练习册系列答案
相关题目
11.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=3,|$\overrightarrow{a}$-$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$夹角为θ,则$\frac{|\overrightarrow{a}|}{|\overrightarrow{b}|cosθ}$+$\frac{|\overrightarrow{b}|}{|\overrightarrow{a}|cosθ}$=( )
| A. | $\frac{1}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{5}{4}$ | D. | 3 |
8.
如图,正四面体ABCD中,E、F分别是棱BC和AD的中点,则直线AE和CF所成的角的余弦值为( )
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{4}$ |
5.设函数f(x)=|x2-2x-1|,若m>n>1,且f(m)=f(n),则mn的取值范围为( )
| A. | $({3,3+2\sqrt{2}})$ | B. | $({3,3+2\sqrt{2}}]$ | C. | (1,3) | D. | (1,3] |