题目内容

16.如果已知sinα•cosα<0,sinα•tanα<0,那么角$\frac{α}{2}$的终边在(  )
A.第一或第二象限B.第一或第三象限C.第二或第四象限D.第四或第三象限

分析 sinα•cosα<0,sinα•tanα<0,则sinα>0,cosα<0,tanα<0,可得α在第二象限,进而得出结论.

解答 解:∵sinα•cosα<0,sinα•tanα<0,
∴sinα>0,cosα<0,tanα<0,
∴α在第二象限,
∴$2kπ+\frac{π}{2}$<α<2kπ+π,k∈Z.
∴$kπ+\frac{π}{4}$<$\frac{α}{2}$<kπ+$\frac{π}{2}$,
对k分类讨论,那么角$\frac{α}{2}$的终边在第一或第三象限.
故选:B.

点评 本题考查了三角函数值的符号、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网