ÌâÄ¿ÄÚÈÝ
£¨1£©Ð´³öb1£¬b2£¬b3£¬b4£¬²¢Ð´³öbn+1ÓëbnµÄµÝÍÆ¹ØÏµ£¨²»ÒªÇóÖ¤Ã÷£©£»
£¨2£©Áîcn=bn+2£¬Ö¤Ã÷{cn}ÊǵȱÈÊýÁУ¬²¢Çó³ö{bn}µÄͨÏʽ£»
£¨3£©ÊýÁÐ{bn}ÖÐÊÇ·ñ´æÔÚ²»Í¬µÄÈýÏîbp£¬bq£¬br£¨p£¬q£¬r¡ÊN+£©Ç¡ºÃ³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬Çó³öp£¬q£¬rµÄ¹ØÏµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÊýÁеÄÓ¦ÓÃ
רÌ⣺
·ÖÎö£º£¨1£©ÀûÓÃÊý±í£¬¿ÉÇób1£¬b2£¬b3£¬b4£¬²¢ÇÒbn+1=a£¨n+1£©1+a£¨n+1£©2+¡+a£¨n+1£©£¨n+1£©=2£¨an1+an2+¡+ann£©+2=2bn+2£®
£¨2£©ÓÉbn+1=2bn+2£¬¿ÉµÃbn+1+2=2£¨bn+2£©£¬´Ó¶ø{bn+2}ÊÇÒÔb1+2=3ΪÊ×Ï2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬¼´¿ÉÇó³ö{bn}µÄͨÏʽ£»
£¨3£©Éèp£¾q£¾r£¬{bn}ÊǵÝÔöÊýÁУ¬2bq=bp+br£¬ÓÉ´ËÄܵ¼³öÊýÁÐ{bn}Öв»´æÔÚ²»Í¬µÄÈýÏîbp£¬bq£¬brÇ¡ºÃ³ÉµÈ²îÊýÁУ®
£¨2£©ÓÉbn+1=2bn+2£¬¿ÉµÃbn+1+2=2£¨bn+2£©£¬´Ó¶ø{bn+2}ÊÇÒÔb1+2=3ΪÊ×Ï2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬¼´¿ÉÇó³ö{bn}µÄͨÏʽ£»
£¨3£©Éèp£¾q£¾r£¬{bn}ÊǵÝÔöÊýÁУ¬2bq=bp+br£¬ÓÉ´ËÄܵ¼³öÊýÁÐ{bn}Öв»´æÔÚ²»Í¬µÄÈýÏîbp£¬bq£¬brÇ¡ºÃ³ÉµÈ²îÊýÁУ®
½â´ð£º
£¨1£©½â£ºb1=1£¬b2=2+2=4£¬b3=3+4+3=10£¬b4=4+7+7+4=22£¬
bn+1=a£¨n+1£©1+a£¨n+1£©2+¡+a£¨n+1£©£¨n+1£©=n+1+£¨an1+an2£©+¡+£¨an£¨n-1£©ann£©+n+1=2£¨an1+an2+¡+ann£©+2=2bn+2£»
£¨2£©Ö¤Ã÷£º¡ßbn+1=2bn+2£¬
¡àbn+1+2=2£¨bn+2£©
¡à{bn+2}ÊÇÒÔb1+2=3ΪÊ×Ï2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
¡ßcn=bn+2£¬¡à{cn}ÊǵȱÈÊýÁУ¬
¡ßbn+2=cn=3•2n-1£¬
¡àbn=3•2n-1-2£»
£¨3£©½â£ºÈôÊýÁÐ{bn}ÖдæÔÚ²»Í¬µÄÈýÏîbp£¬bq£¬br£¨p£¬q£¬r¡ÊN*£©Ç¡ºÃ³ÉµÈ²îÊýÁУ¬
²»·ÁÉèp£¾q£¾r£¬ÏÔÈ»{bn}ÊǵÝÔöÊýÁУ¬Ôò2bq=bp+br£¨12·Ö£©
¼´2£¨3•2q-1-2£©=£¨3•2p-1-2£©+£¨3•2r-1-2£©£¬»¯¼òµÃ£º2•2q-r=2p-r+1£¨*£©£¨14·Ö£©
ÓÉÓÚp£¬q£¬r¡ÊN*£¬ÇÒp£¾q£¾r£¬Öªq-r¡Ý1£¬p-r¡Ý2£¬
¡à£¨*£©Ê½×ó±ßΪżÊý£¬ÓÒ±ßÎªÆæÊý£¬
¹ÊÊýÁÐ{bn}Öв»´æÔÚ²»Í¬µÄÈýÏîbp£¬bq£¬br£¨p£¬q£¬r¡ÊN*£©Ç¡ºÃ³ÉµÈ²îÊýÁУ®
bn+1=a£¨n+1£©1+a£¨n+1£©2+¡+a£¨n+1£©£¨n+1£©=n+1+£¨an1+an2£©+¡+£¨an£¨n-1£©ann£©+n+1=2£¨an1+an2+¡+ann£©+2=2bn+2£»
£¨2£©Ö¤Ã÷£º¡ßbn+1=2bn+2£¬
¡àbn+1+2=2£¨bn+2£©
¡à{bn+2}ÊÇÒÔb1+2=3ΪÊ×Ï2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
¡ßcn=bn+2£¬¡à{cn}ÊǵȱÈÊýÁУ¬
¡ßbn+2=cn=3•2n-1£¬
¡àbn=3•2n-1-2£»
£¨3£©½â£ºÈôÊýÁÐ{bn}ÖдæÔÚ²»Í¬µÄÈýÏîbp£¬bq£¬br£¨p£¬q£¬r¡ÊN*£©Ç¡ºÃ³ÉµÈ²îÊýÁУ¬
²»·ÁÉèp£¾q£¾r£¬ÏÔÈ»{bn}ÊǵÝÔöÊýÁУ¬Ôò2bq=bp+br£¨12·Ö£©
¼´2£¨3•2q-1-2£©=£¨3•2p-1-2£©+£¨3•2r-1-2£©£¬»¯¼òµÃ£º2•2q-r=2p-r+1£¨*£©£¨14·Ö£©
ÓÉÓÚp£¬q£¬r¡ÊN*£¬ÇÒp£¾q£¾r£¬Öªq-r¡Ý1£¬p-r¡Ý2£¬
¡à£¨*£©Ê½×ó±ßΪżÊý£¬ÓÒ±ßÎªÆæÊý£¬
¹ÊÊýÁÐ{bn}Öв»´æÔÚ²»Í¬µÄÈýÏîbp£¬bq£¬br£¨p£¬q£¬r¡ÊN*£©Ç¡ºÃ³ÉµÈ²îÊýÁУ®
µãÆÀ£º±¾Ì⿼²éÁ˵ȲîÊýÁк͵ȱÈÊýÁеĻù±¾ÐÔÖʺÍÊýÁеĵÝÍÆ¹«Ê½£¬¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦ºÍ¶ÔÊýÁеÄ×ÛºÏÕÆÎÕ£¬½âÌâʱעÒâÕûÌå˼ÏëºÍת»¯Ë¼ÏëµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
¶¯µãPÔÚº¯Êýy=sin2xµÄͼÏóÉÏÒÆ¶¯£¬¶¯µãQ£¨x£¬y£©Âú×ã
=£¨
£¬0£©£¬Ôò¶¯µãQµÄ¹ì¼£·½³ÌΪ£¨¡¡¡¡£©
| PQ |
| ¦Ð |
| 8 |
A¡¢y=sin£¨2x+
| ||
B¡¢y=sin£¨2x-
| ||
C¡¢y=sin£¨2x+
| ||
D¡¢y=sin£¨2x-
|