题目内容
(1)从中取4瓶,恰有2瓶上的数字相邻的取法有多少种?
(2)把10个空矿泉水瓶挂成如下4列的形式,作为射击的靶子,规定每次只能射击每列最下面的一个(射中后这个空瓶会掉到地下),把10个矿泉水瓶全部击中有几种不同的射击方案?
(3)把击中后的矿泉水瓶分送给A、B、C三名垃圾回收人员,每个瓶子1角钱.垃圾回收人员卖掉瓶子后有几种不同的收入结果?
考点:排列、组合的实际应用
专题:应用题,排列组合
分析:(1)01连在一起时有15中情况;12连在一起时有10种情况;23连在一起有11种情况;34连在一起有11种情况;45连在一起有11种情况;56和34一样,67和23一样;78和12一样;89和01一样,共有105种;
(2)一种射击方案对应于从0至9共十个数字中取2个、3个、3个、2个数字的组合,因为每组数的数字大小是固定的,数字小的挂下面,可得结论;
(3)由于A、B、C所得钱数与瓶子编号无关,他们所得钱数只与所得瓶子个数有关,即可得出结论.
(2)一种射击方案对应于从0至9共十个数字中取2个、3个、3个、2个数字的组合,因为每组数的数字大小是固定的,数字小的挂下面,可得结论;
(3)由于A、B、C所得钱数与瓶子编号无关,他们所得钱数只与所得瓶子个数有关,即可得出结论.
解答:
解:(1)01连在一起时有15中情况;12连在一起时有10种情况;23连在一起有11种情况;34连在一起有11种情况;45连在一起有11种情况;56和34一样,67和23一样;78和12一样;89和01一样,共有105种.
(2)一种射击方案对应于从0至9共十个数字中取2个、3个、3个、2个数字的组合,因为每组数的数字大小是固定的,数字小的挂下面.所以共有
=25200.
(3)由于A、B、C所得钱数与瓶子编号无关,他们所得钱数只与所得瓶子个数有关.所以
=66.
(2)一种射击方案对应于从0至9共十个数字中取2个、3个、3个、2个数字的组合,因为每组数的数字大小是固定的,数字小的挂下面.所以共有
| C | 2 10 |
| C | 3 8 |
| C | 3 5 |
(3)由于A、B、C所得钱数与瓶子编号无关,他们所得钱数只与所得瓶子个数有关.所以
| C | 2 12 |
点评:本题考查排列、组合的实际应用,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
如果圆(x-a)2+(y-a)2=8上总存在到原点的距离为
的点,则实数a的取值范围是( )
| 2 |
| A、(-3,-1)∪(1,3) |
| B、(-3,3) |
| C、[-1,1] |
| D、[-3,-1]∪[1,3] |
已知向量
=(1,m),
=(2,-m),若
⊥
,则实数m等于( )
| a |
| b |
| a |
| b |
A、-
| ||||
B、
| ||||
| C、0 | ||||
D、-
|