题目内容

已知F1,F2分别是椭圆
x2
16
+
y2
7
=1的左右焦点,若点P在椭圆上,且
PF1
PF2
=0
,求|
PF1
-
PF2
|
的值.
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:根据椭圆方程求出a、b、c的值,由
PF1
PF2
=0
得PF1⊥PF2,由勾股定理求出|PF1|2+|PF2|2的值,利用数量积运算求出|
PF1
-
PF2
|
的值.
解答: 解:由椭圆方程
x2
16
+
y2
7
=1得,a=4、b=
7
、c=3,
所以|PF1|+|PF2|=2a=8,|F1F2|=2c=6,
因为
PF1
PF2
=0
,所以PF1⊥PF2
在直角三角形△PF1F2中,|PF1|2+|PF2|2=|F1F2|2=36,
所以|
PF1
-
PF2
|2
=(
PF1
-
PF2
)2
=|PF1|2-2
PF1
PF2
+|PF2|2
=36,
|
PF1
-
PF2
|
=6,
|
PF1
-
PF2
|
的值是6.
点评:本题考查椭圆的定义、标准方程,向量垂直的条件,以及利用向量的数量积求向量的模,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网