题目内容

设A、B、P是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)上不同的三个点,且A、B连线经过坐标原点,若直线PA、PB的斜率之积为
1
4
,则该双曲线的离心率为(  )
A、
5
2
B、
6
2
C、
2
D、
15
3
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由于A,B连线经过坐标原点,所以A,B一定关于原点对称,利用直线PA,PB的斜率乘积,可寻求几何量之间的关系,从而可求离心率.
解答: 解:根据双曲线的对称性可知A,B关于原点对称,
设A(x1,y1),B(-x1,-y1),P(x,y),
x12
a2
-
y12
b2
=1
x2
a2
-
y2
b2
=1

∴kPA•kPB=
y1-y
x1-x
-y1-y
-x1-x
=
b2
a2
=
1
4

∴该双曲线的离心率e=
1+
b2
a2
=
5
2

故选:A.
点评:本题主要考查双曲线的几何性质,考查点差法,关键是设点代入化简,应注意双曲线几何量之间的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网